Making and breaking post-quantum cryptography from elliptic curves

Chloe Martindale

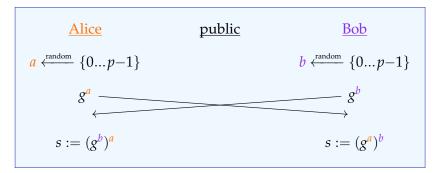
University of Bristol

29th November 2023

Recall: Diffie–Hellman key exchange '76

Public parameters:

- a finite group G (typically \mathbb{F}_q^* or $E(\mathbb{F}_q)$)
- an element $g \in G$ of (large) prime order p



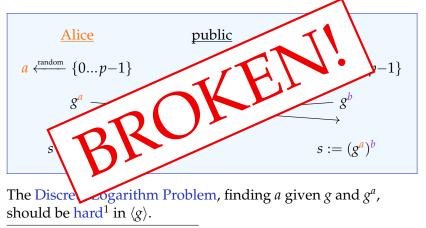
The Discrete Logarithm Problem, finding *a* given *g* and g^a , should be hard¹ in $\langle g \rangle$.

¹Complexity (at least) subexponential in log(p).

Recall: Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (typically \mathbb{F}_q^* or $E(\mathbb{F}_q)$)
- an element $g \in G$ of (large) prime order p



¹Complexity (at least) subexponential in log(p).

Quantumifying Exponentiation

 Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

Quantumifying Exponentiation

 Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

• Replace *G* by a set *S* of specially chosen elliptic curves $/\mathbb{F}_q$.

Quantumifying Exponentiation

 Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

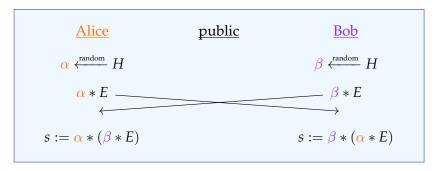
- Replace *G* by a set *S* of specially chosen elliptic curves $/\mathbb{F}_q$.
- ► Replace Z by a commutative group *H* that acts freely and transitively on *S* via surjective morphisms (isogenies):

$$\begin{array}{rccc} H \times S & \to & S \\ (\alpha, E) & \mapsto & \alpha * E := \alpha(E) \end{array}$$

Couveignes-Rostovstev-Stolbunov key exchange

Public parameters:

- ► a finite set *S* (of specially chosen elliptic curves /𝔽_q),
- an element $E \in S$,
- ► a group *H* that acts freely and transitively on *S* via *.



Finding α given *E* and $\alpha * E$, should be hard.²

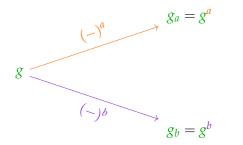
²Complexity (at least) subexponential in $\log(\#S)$.

From CRS to CSIDH

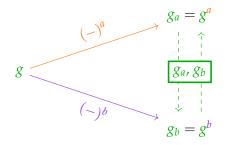
1997 Couveignes proposes the now-CRS scheme.

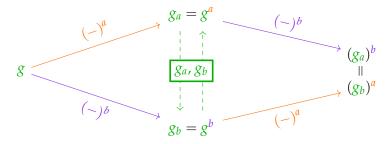
- Uses ordinary elliptic curves/ \mathbb{F}_p with same end ring.
- Paper is rejected and forgotten.
- 2004 Rostovstev, Stolbunov rediscover now-CRS scheme.
 - Best known quantum and classical attacks are exponential.
- 2005 Kuperberg: quantum subexponential attack for the dihedral hidden subgroup problem.
- 2010 Childs, Jao, Soukharev apply Kuperberg to CRS.
 - ► Secure parameters ~→ key exchange of 20 minutes.
- 2011 Jao, De Feo propose SIDH [more to come!].
- 2017 De Feo, Kieffer, Smith use modular curves to do a CRS key exchange in 8 minutes.
- 2018 Castryck, Lange, M., Panny, Renes propose CSIDH.
 - ► CRS but with supersingular elliptic curves /𝔽_p.
 - ► *p* constructed to make scheme efficient.
 - ► Key exchange runs in 60ms.*

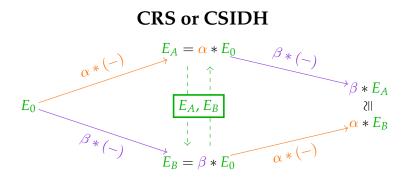
Diffie-Hellman

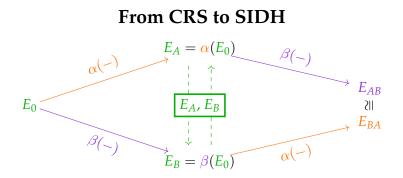


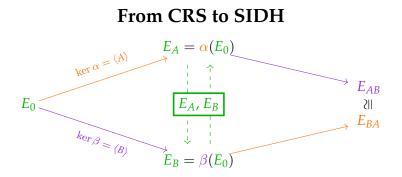
Diffie-Hellman

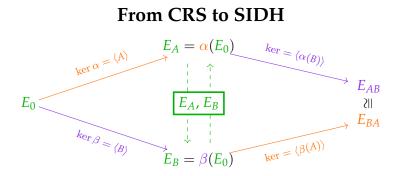


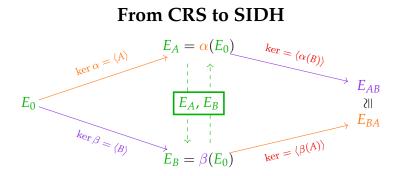


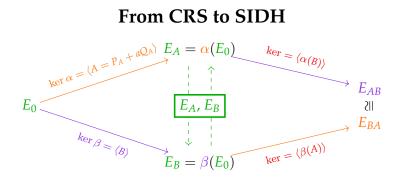




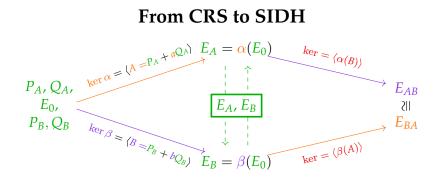




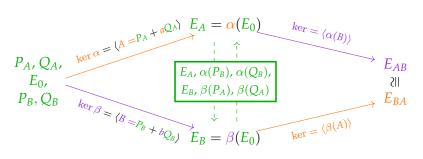


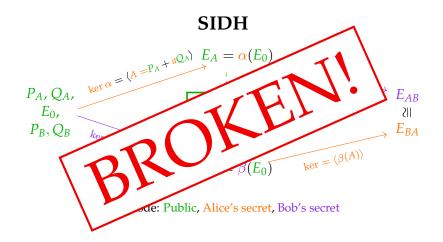


Colour code: Public, Alice's secret, Bob's secret, ?!



SIDH





► Diffie-Hellman – The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.
- ► All isogeny-based schemes Given elliptic curves E_0 and E_A , compute an isogeny $\alpha : E_0 \rightarrow E_A$ if it exists.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.
- ► All isogeny-based schemes Given elliptic curves E_0 and E_A , compute an isogeny $\alpha : E_0 \rightarrow E_A$ if it exists.
- ► SIDH -

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

*Details for the elliptic curve lovers:

p a large prime; E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} supersingular; deg(α), *N* public large smooth coprime integers; points P_B , Q_B chosen such that $\langle P_B, Q_B \rangle = E_0[N]$.

History of the SIDH problem

- 2011 Problem introduced by De Feo, Jao, and Plut
- 2016 Galbraith, Petit, Shani, Ti give active attack
- 2017 Petit gives passive attack on some parameter sets
- 2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give passive attack on more parameter sets
- 2022 Castryck-Decru and Maino-M. give passive attack on SIKE parameter sets; Robert extends to all parameter sets
 - ► CD and MM attack is subexponential in most cases
 - CD attack polynomial-time when $End(E_0)$ known
 - Robert attack polynomial-time in all cases
 - Panny and Pope implement MM attack; Wesolowski independently discovers direct recovery method

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α or ker(α). (modulo technical restrictions)*

• The set of points on an elliptic curve forms a group.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta : E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta: E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.
- ► Every isogeny (e.g. $\alpha : E_0 \to E_A$) has a dual isogeny (e.g. $\widehat{\alpha} : E_A \to E_0$)

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α or ker(α). (modulo technical restrictions)*

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta: E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.
- ► Every isogeny (e.g. $\alpha : E_0 \to E_A$) has a dual isogeny (e.g. $\widehat{\alpha} : E_A \to E_0$)

 \rightsquigarrow Petit's idea: Construct $\theta : E_A \to E_A$ such that $\ker(\widehat{\alpha}) \subseteq \ker(\theta)$.

Petit's trick: torsion points to isogenies

Finding the secret isogeny α of known degree.

Petit's trick: torsion points to isogenies

Finding the secret isogeny α of known degree.

• Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.

Finding the secret isogeny α of known degree.

• Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$ from public torsion points.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.
- ► Restriction # 2: If there exist *ι*, *n* such that deg(θ) = N, then can completely determine θ, and α, in polynomial-time.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.
- ► Restriction # 2: If there exist *ι*, *n* such that deg(θ) = N, then can completely determine θ, and α, in polynomial-time.
- Restriction # 2 rules out SIKE parameters, where N ≈ deg(α) (and p ≈ N · deg α).

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough.

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough. But!

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough. But! Kani's theorem:

 Constructs *E*₁, *E*₂ such that there exists a (structure-preserving) isogeny

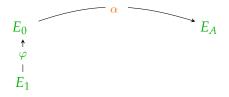
$$E_1 \times E_A \to E_0 \times E_2$$

of the right degree, N^2 .

► Petit's trick then applies.

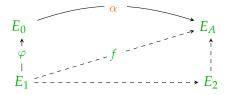
Recovering the secret

Recovering the secret



Recovering the secret

Finding the secret isogeny α of known degree.



Kani's theorem constructs the above such that

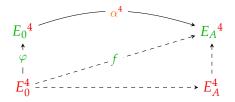
$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha} \\ * & * \end{pmatrix} : E_1 \times E_A \to E_0 \times E_2$$

is a structure preserving isogeny of degree N^2 , and

 $\ker(\Phi) = \{(\deg(\alpha)P, f(P)) : P \in E_1[N]\}$

 \rightsquigarrow can compute Φ and read off secret α !

Recovering the secret with Robert's trick Finding the secret isogeny α of known degree.



constructs the above such that

$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha}^4 \\ * & * \end{pmatrix} : E_0^4 \times E_A^4 \to E_0^4 \times E_A^4$$

is a structure preserving isogeny of degree N^2 , and

 $\ker(\Phi)$ is known

 \rightsquigarrow can compute Φ and read off secret α !

What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
 - Masks either torsion point images or isogeny degrees
 - The mitigations make SIKE/SIDH unusably slow and big
 - For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
 - Cryptanalysis ongoing effort

What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
 - Masks either torsion point images or isogeny degrees
 - The mitigations make SIKE/SIDH unusably slow and big
 - For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
 - Cryptanalysis ongoing effort
- Constructive applications?
 - ► FESTA: New PKE. Fast and small as SIKE was?
 - SQISignHD: Small, fast signatures with clean security reduction.
 - VDF-like construction.
 - ► Work in progress with Maino and Robert ~> computing genus 2 cyclic isogenies.

What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
 - Masks either torsion point images or isogeny degrees
 - The mitigations make SIKE/SIDH unusably slow and big
 - For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
 - Cryptanalysis ongoing effort
- Constructive applications?
 - ► FESTA: New PKE. Fast and small as SIKE was?
 - SQISignHD: Small, fast signatures with clean security reduction.
 - VDF-like construction.
 - ► Work in progress with Maino and Robert ~> computing genus 2 cyclic isogenies.

Thank you!