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Recall: Diffie–Hellman key exchange ‘76

Public parameters:
I a finite group G (typically F∗

q or E(Fq))

I an element g ∈ G of (large) prime order p

Alice public Bob

a random←−−− {0...p−1} b random←−−− {0...p−1}

ga gb

s := (gb)a s := (ga)b

The Discrete Logarithm Problem, finding a given g and ga,
should be hard1 in 〈g〉.

BROKEN!

1Complexity (at least) subexponential in log(p).
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Quantumifying Exponentiation

I Couveignes ‘97, Rostovtsev, Stolbunov ‘04: Idea to replace
the Discrete Logarithm Problem: replace exponentiation

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by a set S of specially chosen elliptic curves /Fq.
I Replace Z by a commutative group H that acts freely and

transitively on S via surjective morphisms (isogenies):

H × S → S
(α,E) 7→ α ∗ E := α(E)
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Couveignes-Rostovstev-Stolbunov key exchange

Public parameters:
I a finite set S (of specially chosen elliptic curves /Fq),
I an element E ∈ S,
I a group H that acts freely and transitively on S via ∗.

Alice public Bob

α
random←−−− H β

random←−−− H

α ∗ E β ∗ E

s := α ∗ (β ∗ E) s := β ∗ (α ∗ E)

Finding α given E and α ∗ E, should be hard.2

2Complexity (at least) subexponential in log(#S).
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From CRS to CSIDH
1997 Couveignes proposes the now-CRS scheme.

I Uses ordinary elliptic curves/Fp with same end ring.
I Paper is rejected and forgotten.

2004 Rostovstev, Stolbunov rediscover now-CRS scheme.
I Best known quantum and classical attacks are exponential.

2005 Kuperberg: quantum subexponential attack for the
dihedral hidden subgroup problem.

2010 Childs, Jao, Soukharev apply Kuperberg to CRS.
I Secure parameters key exchange of 20 minutes.

2011 Jao, De Feo propose SIDH [more to come!].
2017 De Feo, Kieffer, Smith use modular curves to do a CRS key

exchange in 8 minutes.
2018 Castryck, Lange, M., Panny, Renes propose CSIDH.

I CRS but with supersingular elliptic curves /Fp.
I p constructed to make scheme efficient.
I Key exchange runs in 60ms.∗
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Evolution of key exchange

Diffie-Hellman

g

ga = ga

gb = gb

(−)a

(−) b

Colour code: Public, Alice’s secret, Bob’s secret

, ?!
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Evolution of key exchange

CRS or CSIDH

E0

EA = α ∗ E0

EB = β ∗ E0

β ∗ EA

α ∗ EB

∼ =

α ∗ (−)

β ∗ (−)
α ∗ (−)

β ∗ (−)

EA, EB
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Evolution of key exchange

From CRS to SIDH

PA, QA,
E0,

PB,QB
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Evolution of key exchange
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Summary of hard problems

I Diffie-Hellman – The Discrete Logarithm Problem,
finding a given g and ga.

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.
I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), N public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[N].
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History of the SIDH problem

2011 Problem introduced by De Feo, Jao, and Plut
2016 Galbraith, Petit, Shani, Ti give active attack
2017 Petit gives passive attack on some parameter sets
2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give

passive attack on more parameter sets
2022 Castryck-Decru and Maino-M. give passive attack on SIKE

parameter sets; Robert extends to all parameter sets
I CD and MM attack is subexponential in most cases
I CD attack polynomial-time when End(E0) known
I Robert attack polynomial-time in all cases
I Panny and Pope implement MM attack; Wesolowski

independently discovers direct recovery method
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Technical interlude

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α

or ker(α)

. (modulo technical restrictions)*

I The set of points on an elliptic curve forms a group.
I EA[N] = set of points of order dividing N.
I ∗ EA[N] = 〈α(PB), α(QB)〉.
I If deg(θ : EA → EA) = N, then ker(θ) ⊆ EA[N].
I Every isogeny (e.g. α : E0 → EA) has a dual isogeny (e.g.
α̂ : EA → E0)

 Petit’s idea: Construct θ : EA → EA such that ker(α̂) ⊆ ker(θ).
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree.

E0 EA
α̂

α

ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[N]) (and ̂α(EA[N]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = N, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
N ≈ deg(α) (and p ≈ N · degα).
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Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But! Kani’s theorem:

I Constructs E1, E2 such that there exists a
(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.
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Recovering the secret

with Robert’s trick

Finding the secret isogeny α of known degree.

E0

4

EA

4

α̂

α

4

ι

ϕ f

constructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: ×EA → E0×

is a structure preserving isogeny of degree N2, and
 can compute Φ and read off secret α!
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Kani’s theorem constructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: E1 × EA → E0 × E2

is a structure preserving isogeny of degree N2, and

ker(Φ) = {(deg(α)P, f (P)) : P ∈ E1[N]}

 can compute Φ and read off secret α!
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Recovering the secret with Robert’s trick
Finding the secret isogeny α of known degree.
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constructs the above such that

Φ =

(
ϕ −α̂4

∗ ∗

)
: E4

0 × E4
A → E4

0 × E4
A

is a structure preserving isogeny of degree N2, and

ker(Φ) is known

 can compute Φ and read off secret α!
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What next?

I Fouotsa, Moriya, and Petit proposed mitigations
I Masks either torsion point images or isogeny degrees
I The mitigations make SIKE/SIDH unusably slow and big
I For advanced protocols may still be a good option

(c.f. Basso’s OPRF, threshold schemes, etc.)
I Cryptanalysis ongoing effort

I Constructive applications?
I FESTA: New PKE. Fast and small as SIKE was?
I SQISignHD: Small, fast signatures with clean security

reduction.
I VDF-like construction.
I Work in progress with Maino and Robert
 computing genus 2 cyclic isogenies.

Thank you!
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