Isogeny-based cryptography: why, how, and what next?

Chloe Martindale

University of Bristol

ASCrypto, Ecuador

Zoo of lattice- and isogeny-based KEMs

Applications (non-exhaustive list)

	Lattices	Isogenies
KEM	\checkmark	\checkmark
Signatures	\checkmark	\checkmark
NIKE	(√)	\checkmark
FHE	\checkmark	×
IBE	(√)	×
Threshold	\checkmark	\checkmark
OPRF	\checkmark	\checkmark
VDF	(×)	(√)
VRF	(√)	(√)

Big picture \wp

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Recall: Diffie–Hellman key exchange '76

Public parameters:

- a finite group G (typically \mathbb{F}_q^* or $E(\mathbb{F}_q)$)
- an element $g \in G$ of (large) prime order p

The Discrete Logarithm Problem, finding *a* given *g* and g^a , should be hard¹ in $\langle g \rangle$.

¹Complexity (at least) subexponential in log(p).

Recall: Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (typically \mathbb{F}_q^* or $E(\mathbb{F}_q)$)
- an element $g \in G$ of (large) prime order p

¹Complexity (at least) subexponential in log(p).

Quantumifying Exponentiation

► Idea to replace DLP: replace exponentiation

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

Quantumifying Exponentiation

► Idea to replace DLP: replace exponentiation

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- ► Replace Z by a commutative group *H* that acts via isogenies.
- ► The action of *h* ∈ *H* on *S* moves the elliptic curves one step around one of the cycles.

Couveignes-Rostovstev-Stolbunov key exchange

Public parameters:

- the finite set *S* (of some special E/\mathbb{F}_q),
- an element $E \in S$,
- the group *H*; acts on *S* via *.

Finding α given *E* and $\alpha * E$, should be hard.²

²Complexity (at least) subexponential in $\log(\#S)$.

From CRS to CSIDH

1997 Couveignes proposes the now-CRS scheme.

- Uses ordinary elliptic curves/ \mathbb{F}_p with same end ring.
- Paper is rejected and forgotten.
- 2004 Rostovstev, Stolbunov rediscover now-CRS scheme.
 - ► Best known quantum and classical attacks are exponential.
- 2005 Kuperberg: quantum subexponential attack for the dihedral hidden subgroup problem.
- 2010 Childs, Jao, Soukharev apply Kuperberg to CRS.
 - ► Secure parameters ~→ key exchange of 20 minutes.
- 2011 Jao, De Feo propose SIDH [more to come!].
- 2017 De Feo, Kieffer, Smith use modular curves to do a CRS key exchange in 8 minutes.
- 2018 Castryck, Lange, M., Panny, Renes propose CSIDH.
 - ► CRS but with supersingular elliptic curves /𝔽_p.
 - ► *p* constructed to make scheme efficient.
 - Key exchange runs in 60ms.

Isogeny graphs at the CSIDH

Isogeny graphs at the CSIDH

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Isogeny graphs at the CSIDH

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, **5**-, and 7-isogenies.

Graphs of elliptic curves

To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

• Find a point *P* of order ℓ on *E*.

► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - Let E/\mathbb{F}_p be supersingular and $p \ge 5$.

► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - Let *E*/𝔽_p be supersingular and *p* ≥ 5. Then *E*(𝔽_p) ≃ *C*_{p+1} or *C*₂ × *C*_{(p+1)/2}.

► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - ► Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
- ► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - ► Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- Compute the isogeny with kernel {P,2P,..., lP} using Vélu's formulas* (implemented in Sage).
 - ► Given a F_p-rational point of order *l*, the isogeny computations can be done over F_p.

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

⇒ Can compress every node to a single value $A \in \mathbb{F}_p$. ⇒ Tiny keys!

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

• About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p + 1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p + 1]P = \infty$.³

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

Venturing beyond the CSIDH

A selection of advances since original publication (2018):

- CSURF [CD19]: exploiting 2-isogenies.
- sqrtVelu [BDLS20]: square-root speed-up on computation of large-degree isogenies.
- Radical isogenies [CDV20]: significant speed-up on isogenies of small-ish degree.
- Some work on different curve forms (e.g. Edwards, Huff).
- ► Knowledge of End(*E*₀) and End(*E*_A) breaks CSIDH in classical polynomial time [Wes21].
- The SQALE of CSIDH [CCJR22]: carefully constructed CSIDH parameters less susceptible to Kuperberg's quantum algorithm.
- CTIDH [B²C²LMS²21]: Efficient constant-time CSIDH-style construction.

Diffie-Hellman

Diffie-Hellman

Colour code: Public, Alice's secret, Bob's secret

Colour code: Public, Alice's secret, Bob's secret, ?!

Colour code: Public, Alice's secret, Bob's secret, ?!

Colour code: Public, Alice's secret, Bob's secret, ?!

SIDH

Colour code: Public, Alice's secret, Bob's secret

▶ Diffie-Hellman – The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.
- ► All isogeny-based schemes Given elliptic curves E_0 and E_A , compute an isogeny $\alpha : E_0 \rightarrow E_A$ if it exists.

- ► Diffie-Hellman The Discrete Logarithm Problem, finding *a* given *g* and *g^a*.
- CRS / CSIDH Finding α given *E* and $\alpha * E$.
- ► All isogeny-based schemes Given elliptic curves E_0 and E_A , compute an isogeny $\alpha : E_0 \rightarrow E_A$ if it exists.
- ► SIDH -

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

*Details for the elliptic curve lovers:

p a large prime; E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} supersingular; deg(α), *N* public large smooth coprime integers; points P_B , Q_B chosen such that $\langle P_B, Q_B \rangle = E_0[N]$.

History of the SIDH problem

- 2011 Problem introduced by De Feo, Jao, and Plut
- 2016 Galbraith, Petit, Shani, Ti give active attack
- 2017 Petit gives passive attack on some parameter sets
- 2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give passive attack on more parameter sets
- 2022 Castryck-Decru and Maino-M.(-Panny-Pope-Wesolowski) give passive attack on SIKE parameter sets; Robert extends to all parameter sets
 - CD and MMPPW attack is subexponential in most cases
 - CD attack polynomial-time when $End(E_0)$ known
 - Robert attack polynomial-time in all cases

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α or ker(α). (modulo technical restrictions)*

• The set of points on an elliptic curve forms a group.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta : E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta : E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.
- ► Every isogeny (e.g. $\alpha : E_0 \to E_A$) has a dual isogeny (e.g. $\widehat{\alpha} : E_A \to E_0$)

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α or ker(α). (modulo technical restrictions)*

- The set of points on an elliptic curve forms a group.
- $E_A[N]$ = set of points of order dividing *N*.
- * $\rightsquigarrow E_A[N] = \langle \alpha(P_B), \alpha(Q_B) \rangle.$
- If $\deg(\theta: E_A \to E_A) = N$, then $\ker(\theta) \subseteq E_A[N]$.
- ► Every isogeny (e.g. $\alpha : E_0 \to E_A$) has a dual isogeny (e.g. $\widehat{\alpha} : E_A \to E_0$)

 \rightsquigarrow Petit's idea: Construct $\theta : E_A \rightarrow E_A$ such that $\ker(\widehat{\alpha}) \subseteq \ker(\theta)$.

Finding the secret isogeny α of known degree.

• Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.

Finding the secret isogeny α of known degree.

• Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$ from public torsion points.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.
- ► Restriction # 2: If there exist *ι*, *n* such that deg(θ) = N, then can completely determine θ, and α, in polynomial-time.

- Restriction # 1: Assume we can choose $\iota : E_0 \to E_0$.
- Know $\alpha(E_0[N])$ (and $\alpha(E_A[N])$) from public torsion points.
- Know $\deg(\theta) = \deg(\alpha)^2 \deg(\iota) + n^2$.
- ► Restriction # 2: If there exist *ι*, *n* such that deg(θ) = N, then can completely determine θ, and α, in polynomial-time.
- Restriction # 2 rules out SIKE parameters, where N ≈ deg(α) (and p ≈ N · deg α).

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough.

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough. But!

There are public elliptic curves E_0 and E_A , and a secret isogeny $\alpha : E_0 \rightarrow E_A$. Given the points P_B , Q_B on E_0 and $\alpha(P_B)$, $\alpha(Q_B)$, compute α . (modulo technical restrictions)*

Problem:

Not enough choices $\theta : E_A \to E_A$. 'No θ of degree *N*.'

Solution? θ : $E_0 \times E_A \rightarrow E_0 \times E_A$? \rightsquigarrow still not enough. But! Kani's theorem:

 Constructs E₁, E₂ such that there exists a (structure-preserving) isogeny

$$E_1 \times E_A \to E_0 \times E_2$$

of the right degree, N^2 .

► Petit's trick then applies.

Recovering the secret

Recovering the secret

Recovering the secret

Finding the secret isogeny α of known degree.

Kani's theorem constructs the above such that

$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha} \\ * & * \end{pmatrix} : E_1 \times E_A \to E_0 \times E_2$$

is a structure preserving isogeny of degree N^2 , and

 $\ker(\Phi) = \{(\deg(\alpha)P, f(P)) : P \in E_1[N]\}$

 \rightsquigarrow can compute Φ and read off secret α !

Recovering the secret with Robert's trick Finding the secret isogeny α of known degree.

constructs the above such that

$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha}^4 \\ * & * \end{pmatrix} : E_0^4 \times E_A^4 \to E_0^4 \times E_A^4$$

is a structure preserving isogeny of degree N^8 , and

 $\ker(\Phi)$ is known

 \rightsquigarrow can compute Φ and read off secret α !

What next?

- Fouotsa, Moriya, and Petit proposed mitigations
 - Masks either torsion point images or isogeny degrees
 - ► The mitigations make SIKE/SIDH unusably slow and big
 - For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
 - Cryptanalysis ongoing effort

What next?

- Fouotsa, Moriya, and Petit proposed mitigations
 - Masks either torsion point images or isogeny degrees
 - ► The mitigations make SIKE/SIDH unusably slow and big
 - For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
 - Cryptanalysis ongoing effort
- Constructive applications?
 - ► FESTA: New KEM. Fast and small as SIKE was?
 - SQISignHD: Small, fast signatures with clean security reduction.
 - VDF-like construction
 - ► Work in progress with Maino and Robert ~> computing genus 2 cyclic isogenies.
What about signatures?

CSI-FiSh (S '06, D-G '18, Beullens-Kleinjung-Vercauteren '19)

Identification scheme from $H \times S \rightarrow S$:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find $\mathfrak{a} \in H$ such that $\mathfrak{a} * E = E'$.

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

SQISign(HD) is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign(HD) is a newer signature scheme based on this idea:

E \downarrow E_{pk}

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$ (*rational map + group homomorphism)

SQISign(HD) is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$ (*rational map + group homomorphism)

SQISign(HD) is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$ (*rational map + group homomorphism)

SQISign(HD) is a newer signature scheme based on this idea:

 SIKE '11 KEM. Was in NIST, recently broken in polynomial-time.

- SIKE '11 KEM. Was in NIST, recently broken in polynomial-time.
- CSIDH '18 / SQALE '22 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.

- SIKE '11 KEM. Was in NIST, recently broken in polynomial-time.
- CSIDH '18 / SQALE '22 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- ► FESTA '23 KEM. Fast-ish and small. Relies on new attack ideas. Hard to implement well.
- CSI-FiSh '19 / SCALLOP '23 Digital signature. Small-ish, slow, flexible.

- SIKE '11 KEM. Was in NIST, recently broken in polynomial-time.
- CSIDH '18 / SQALE '22 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- ► FESTA '23 KEM. Fast-ish and small. Relies on new attack ideas. Hard to implement well.
- CSI-FiSh '19 / SCALLOP '23 Digital signature. Small-ish, slow, flexible.
- SQISign '20 Digital signature. Small, slow, clean-ish security assumption, no known attack avenues. In NIST.
- SQISignHD '23 Digital signature. Small, fast-ish, security reduction to very well-studied problem in number theory, hard to implement well.

References

 $[B^2C^2LMS^221]$ ctidh.isogeny.org [BD17] ia.cr/2017/334 [BDLS20] velusgrt.isogeny.org [BEG19] ia.cr/2019/485 [BLMP19] quantum.isogeny.org [BMP23] ia.cr/2023/660 [CC]R22]ia.cr/2020/1520 [CD19] ia.cr/2019/1404 [CDV20] ia.cr/2020/1108 [DFKLMPW23] ia.cr/2023/058 [DLRW23] ia.cr/2023/436 [FM19] ia.cr/2019/555 [GMT19] ia.cr/2019/431 [Wes21] ia.cr/2021/1583