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Applications (non-exhaustive list)

Lattices Isogenies
KEM X X

Signatures X X
NIKE (X) X
FHE X ×
IBE (X) ×

Threshold X X
OPRF X X
VDF (×) (X)
VRF (X) (X)
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Recall: Diffie–Hellman key exchange ‘76

Public parameters:
I a finite group G (typically F∗

q or E(Fq))

I an element g ∈ G of (large) prime order p

Alice public Bob

a random←−−− {0...p−1} b random←−−− {0...p−1}

ga gb

s := (gb)a s := (ga)b

The Discrete Logarithm Problem, finding a given g and ga,
should be hard1 in 〈g〉.

BROKEN!

1Complexity (at least) subexponential in log(p).
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Quantumifying Exponentiation

I Idea to replace DLP: replace exponentiation

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H that acts via
isogenies.

I The action of h ∈ H on S moves the elliptic curves one step
around one of the cycles.
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Couveignes-Rostovstev-Stolbunov key exchange

Public parameters:
I the finite set S (of some special E/Fq),
I an element E ∈ S,
I the group H; acts on S via ∗.

Alice public Bob

α
random←−−− H β

random←−−− H

α ∗ E β ∗ E

s := α ∗ (β ∗ E) s := β ∗ (α ∗ E)

Finding α given E and α ∗ E, should be hard.2

2Complexity (at least) subexponential in log(#S).
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From CRS to CSIDH
1997 Couveignes proposes the now-CRS scheme.

I Uses ordinary elliptic curves/Fp with same end ring.
I Paper is rejected and forgotten.

2004 Rostovstev, Stolbunov rediscover now-CRS scheme.
I Best known quantum and classical attacks are exponential.

2005 Kuperberg: quantum subexponential attack for the
dihedral hidden subgroup problem.

2010 Childs, Jao, Soukharev apply Kuperberg to CRS.
I Secure parameters key exchange of 20 minutes.

2011 Jao, De Feo propose SIDH [more to come!].
2017 De Feo, Kieffer, Smith use modular curves to do a CRS key

exchange in 8 minutes.
2018 Castryck, Lange, M., Panny, Renes propose CSIDH.

I CRS but with supersingular elliptic curves /Fp.
I p constructed to make scheme efficient.
I Key exchange runs in 60ms.
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Isogeny graphs at the CSIDH
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Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.

I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.
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Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!
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Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.3

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.
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Venturing beyond the CSIDH

A selection of advances since original publication (2018):
I CSURF [CD19]: exploiting 2-isogenies.
I sqrtVelu [BDLS20]: square-root speed-up on computation

of large-degree isogenies.
I Radical isogenies [CDV20]: significant speed-up on

isogenies of small-ish degree.
I Some work on different curve forms (e.g. Edwards, Huff).
I Knowledge of End(E0) and End(EA) breaks CSIDH in

classical polynomial time [Wes21].
I The SQALE of CSIDH [CCJR22]: carefully constructed

CSIDH parameters less susceptible to Kuperberg’s
quantum algorithm.

I CTIDH [B2C2LMS221]: Efficient constant-time
CSIDH-style construction.
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Evolution of key exchange

Diffie-Hellman

g

ga = ga

gb = gb

(−)a

(−) b

Colour code: Public, Alice’s secret, Bob’s secret

, ?!
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Evolution of key exchange

CRS or CSIDH

E0

EA = α ∗ E0

EB = β ∗ E0

β ∗ EA

α ∗ EB

∼ =

α ∗ (−)

β ∗ (−)
α ∗ (−)

β ∗ (−)

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret

, ?!
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Evolution of key exchange
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Evolution of key exchange
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Summary of hard problems

I Diffie-Hellman – The Discrete Logarithm Problem,
finding a given g and ga.

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.
I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), N public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[N].
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History of the SIDH problem

2011 Problem introduced by De Feo, Jao, and Plut
2016 Galbraith, Petit, Shani, Ti give active attack
2017 Petit gives passive attack on some parameter sets
2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give

passive attack on more parameter sets
2022 Castryck-Decru and Maino-M.(-Panny-Pope-Wesolowski)

give passive attack on SIKE parameter sets; Robert extends
to all parameter sets

I CD and MMPPW attack is subexponential in most cases
I CD attack polynomial-time when End(E0) known
I Robert attack polynomial-time in all cases
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Technical interlude

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α

or ker(α)

. (modulo technical restrictions)*

I The set of points on an elliptic curve forms a group.
I EA[N] = set of points of order dividing N.
I ∗ EA[N] = 〈α(PB), α(QB)〉.
I If deg(θ : EA → EA) = N, then ker(θ) ⊆ EA[N].
I Every isogeny (e.g. α : E0 → EA) has a dual isogeny (e.g.
α̂ : EA → E0)

 Petit’s idea: Construct θ : EA → EA such that ker(α̂) ⊆ ker(θ).
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree.

E0 EA
α̂

α

ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[N]) (and ̂α(EA[N]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = N, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
N ≈ deg(α) (and p ≈ N · degα).
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Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But! Kani’s theorem:

I Constructs E1, E2 such that there exists a
(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.
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Recovering the secret

with Robert’s trick

Finding the secret isogeny α of known degree.

E0

4

EA

4

α̂

α

4

ι

ϕ f

constructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: ×EA → E0×

is a structure preserving isogeny of degree N2, and
 can compute Φ and read off secret α!
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4
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Recovering the secret with Robert’s trick
Finding the secret isogeny α of known degree.

E0
4 EA

4
α4

E4
0

ϕ

E4
A

f

constructs the above such that

Φ =

(
ϕ −α̂4

∗ ∗

)
: E4

0 × EA
4 → E0

4 × E4
A

is a structure preserving isogeny of degree N8, and

ker(Φ) is known

 can compute Φ and read off secret α!
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What next?

I Fouotsa, Moriya, and Petit proposed mitigations
I Masks either torsion point images or isogeny degrees
I The mitigations make SIKE/SIDH unusably slow and big
I For advanced protocols may still be a good option

(c.f. Basso’s OPRF, threshold schemes, etc.)
I Cryptanalysis ongoing effort

I Constructive applications?
I FESTA: New KEM. Fast and small as SIKE was?
I SQISignHD: Small, fast signatures with clean security

reduction.
I VDF-like construction
I Work in progress with Maino and Robert
 computing genus 2 cyclic isogenies.
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What about signatures?
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CSI-FiSh (S ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren ‘19)
Identification scheme from H × S→ S:

Prover Public Verifier
E ∈ S, li ∈ H

si ← $Z
sk =

∏
li

si ,

pk = sk ∗ E
pk // pk

c← $ {0, 1}c
ppti ← $Z

esk =
∏

li
ti ,

epk1 = esk ∗ E,

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).

After k challenges c, an imposter succeeds with prob 2−k.
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SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign(HD) is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof
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Summary and overview
I SIKE ‘11 KEM. Was in NIST, recently broken in

polynomial-time.

I CSIDH ‘18 / SQALE ‘22 Key exchange. Small, many
applications (c.f. group actions), slow, known quantum
attack needs further study, other attack avenues
non-obvious.

I FESTA ‘23 KEM. Fast-ish and small. Relies on new attack
ideas. Hard to implement well.

I CSI-FiSh ‘19 / SCALLOP ‘23 Digital signature. Small-ish,
slow, flexible.

I SQISign ‘20 Digital signature. Small, slow, clean-ish
security assumption, no known attack avenues. In NIST.

I SQISignHD ‘23 Digital signature. Small, fast-ish, security
reduction to very well-studied problem in number theory,
hard to implement well.
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