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1. Introduction

During an algebra course about modules, one learns that every finitely generated
module over a principal ideal domain has a decomposition as a direct sum of its
torsion submodule and a free module. In particular, if the module is also torsion-
free, then it is a free module, hence a product of copies of the ring itself. It is then
natural to ask whether we can generalize this structure theorem to domains that
are not necessarily principal ideal domains.

Both Bass and Matlis have shown that rings in which every ideal can be generated
by two elements, under varying assumptions on the rings, have the property that
every finitely generated torsion-free module is isomorphic to a direct sum of ideals.
Bass has shown this in the case of commutative rings R with no nilpotent elements
such that the integral closure is a finitely generated R-module, while Matlis has
shown this in the case of local domains.

Moreover, Matlis has shown that these two properties, that every ideal can be
generated by two elements and that every finitely generated torsion-free module is
isomorphic to a direct sum of ideals, are equivalent for local domains. Bass has
shown that they are equivalent under his conditions, except in a situation that
can be analyzed completely. Additionally, they have both added a third equivalent
property, but we will not mention the third equivalent property of Bass, as it is
beyond the scope of this Bachelor thesis.

We shall mainly focus on the proof of Matlis, and more specifically, we will prove
only one implication under some simplifying conditions in Section 5. Before we
start on the proof however, we will first give some examples of domains in which
every ideal can be generated by two elements in Section 3. We will then describe
the dual and double dual of finitely generated modules in Section 4. Moreover,
in Section 6 we will consider the generalisation of the main theorem of this thesis,
as stated by Bass, and we shall give the first part of the proof.

Before we state the main theorem however, we first need some definitions. We
assume that the reader knows the basics of rings, integral domains and modules,
including the definitions of a maximal ideal, a local ring, a semi-local ring and
finitely generated modules. If this is not the case, then we refer to the appendices
in Section A and Section B. All the other definitions required for the main theorem,
including the main theorem itself, will be stated in Section 2.
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2. Definitions & the main theorem

Definition 2.1. Let R be a commutative ring and let n ∈ Z>0. A chain of
prime ideals of length n is a collection {pi}ni=0 of prime ideals with the property
that p0 ( p1 ( . . . ( pn. We define the Krull-dimension of R as the supremum
of the lengths of all the chains of prime ideals in R.

Definition 2.2. Let R be an integral domain and letM be an R-module. A torsion
element of M is an m ∈ M , such that there exists an r ∈ R \ {0} with rm = 0.
If 0 ∈M is the only torsion element, then M is torsion-free.

Definition 2.3. Let R be a commutative ring and A an R-module. We define the
dual of A with respect to R as A∗ := HomR(A,R). If the canonical map

ϕ : A→ A∗∗ := (A∗)∗,

m 7→ (f 7→ f(m)),

is injective, then A is said to be torsionless, and if ϕ is an isomorphism, then A
is said to be reflexive.

Remark 2.4. If R is a domain, then it is straightforward to check that every
torsion-less R-module is torsion-free. The converse holds if we add the condition
that the module is finitely generated. For this, see Lemma 4.7.

Definition 2.5. Let S be a multiplicatively closed subset of a ring R with 1 ∈ S.
The localisation of R with respect to S is the R-algebra

S−1R := {〈r, s〉 : r ∈ R, s ∈ S} / ∼,
where ∼ is the equivalence relation

〈r, s〉 ∼ 〈r′, s′〉 ⇔ ∃t ∈ S : t(rs′ − r′s) = 0,

and the ring homomorphism is given by

π : R→ S−1R,

r 7→ 〈r, 1〉 .

Addition and multiplication on S−1R are defined by

〈r, s〉+ 〈r′, s′〉 := 〈rs′ + sr′, ss′〉 , and 〈r, s〉 · 〈r′, s′〉 := 〈rr′, ss′〉 .

Remark 2.6. If R is an integral domain and S is a multiplicatively closed subset
of R with 1 ∈ S and 0 /∈ S, then 〈r, s〉 ∼ 〈r′, s′〉 if and only if rs′ = r′s. In
particular, in that case, the canonical ring homomorphism π is injective, and we
then identify R as a subring of S−1R.

Notation 2.7. We write r/s for the equivalence class of 〈r, s〉. Moreover, for every
prime ideal p ( R, the set S := R\p is multiplicatively closed with 1 ∈ S and 0 /∈ S,
and we define Rp := S−1R.

Example 2.8. If R is an integral domain, then (0) is a prime ideal of R. We then
define the field of fractions of R as K := R(0).

Example 2.9. Let R be an integral domain and S ⊆ R a multiplicative closed
subset of R. Denote the canonical ring homomorphism R → S−1R by π. As can
be seen in [2, Proposition 2.2b], for all prime ideals p, the assignment q 7→ π−1(q)
with q a prime ideal of Rp, restricts to a one-to-one correspondence between prime
ideals of Rp and prime ideals of R contained in p. The inverse of this assignment
maps a prime ideal q of R containing p to 〈(π(qi))qi∈q〉. It follows that Rp is a local
ring with maximal ideal pRp.
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Definition 2.10. Let R be an integral domain with field of fractions K and let A
be an R-module. We define the rank of A as rank(A) := dimK(K ⊗A).
Example 2.11. Non-zero ideals of an integral domain have rank 1. Moreover, if R
is an integral domain and K its field of fractions, then Rn ⊗K = Kn, hence Rn
has rank n. Finally note that finitely generated modules over integral domains have
finite rank by Lemma B.2 of the appendix.
Definition 2.12. An integral domain is called reflexive if every torsionless R-
module of finite rank is reflexive.
Definition 2.13. An integral domain R is said to have property FD if every
finitely generated torsion-free R-module is a direct sum of ideals. Furthermore, we
say that R has property FD locally if RM has property FD for every maximal
ideal M of R.
Definition 2.14. An integral domain is called Noetherian if every ideal is finitely
generated.
Definition 2.15. Let B be a ring with subring R. We define the integral closure
of R in B as the set of elements b ∈ B such that there exists a monic polynomial f
over R with f(b) = 0.

We are now able to state the main theorem, which was given by Matlis [3]. Matlis
himself was inspired by a similar theorem of Bass in [1], and the theorem is both
more and less general than the one given by Bass. Bass has proven that a commuta-
tive ring R with no nilpotent elements such that every ideal can be generated by two
elements, has property FD, while the theorem of Matlis states this only in the case
of local domains. The theorem of Matlis is however also more general, as it does
not require that the integral closure of R is a finitely generated R-module.
Theorem 2.16 (Matlis, [3]). Let R be an integral domain with field of fractions K.
Then the following are equivalent:
(1) Every ideal of R can be generated by two elements.
(2) Every ring extension S of R in K that is finitely generated as an R-module is
reflexive and satisfies

⋂
n>0 I

n = 0 for every R-ideal I ( S.
(3) The ring R has property FD locally and is Noetherian of Krull dimension 1.

We shall prove that if R is a local Noetherian integral domain satisfying (2), then R
has property FD. For this, see Theorem 5.1. The following definitions are important
for the proof.
Definition 2.17. An R-module M is said to be indecomposable if M 6= 0 and M
cannot be written as a direct sum of two non-zero R-submodules.
Definition 2.18. Let R be an integral domain with field of fractions K and let I
and J be R-submodules of K. We define IJ to be the R-module generated by the
elements i · j with i ∈ I and j ∈ J . We say that I is a fractional ideal if there
exists a non-zero r ∈ R such that rI ⊆ R. In particular, if both I and J are
fractional ideals, then so is IJ . Moreover, if I is a fractional ideal, then we define
the R-module I−1 := {x ∈ K : xI ⊆ R}, which is a fractional ideal if I 6= 0. A
fractional R-ideal I is said to be invertible if there exists an R-module J contained
in K such that IJ = R.
Remark 2.19. Let R be an integral domain with fractional R-ideal I. If I is invert-
ible with IJ = R for an R-module J , then J = I−1. Indeed, we have II−1 ⊆ R,
and multiplying both sides by J yields I−1 ⊆ J . The inclusion J ⊆ I−1 follows by
definition of I−1, hence J = I−1. In particular, this justifies calling I−1 the inverse
of I if I is invertible.
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3. Using the theorem for concrete examples

3.1. Rings of rank 2. In this section we will consider the case where R is an alge-
bra over a principal ideal domain (PID) P such thatR is free of rank 2 over P .

Lemma 3.1. Let P be a PID and let R be a P -algebra. If R ∼=P P 2, then every
ideal I ⊆ R is of the form I = x1R+ x2R with x1, x2 ∈ R.

Proof. Every P -submodule of P 2 is free of rank k 6 2 by a direct generalization
of [5, Theorem 9.7], which states that any subgroup of Zn is free of rank k 6 n.
As R-ideals are P -submodules of R by definition, there exist x1, x2 ∈ R such
that I = x1P + x2P . Since P is contained in R, we have I ⊆ x1R + x2R. Finally
note that x1 and x2 are contained in I, hence x1R+ x2R ⊆ I. Combining the two
inclusions yields I = x1R+ x2R. �

The following lemma gives us insight into rings of rank 2.

Lemma 3.2. Let P be a PID and let R be a P -algebra. Then we have R ∼= P 2

as P -modules if and only if R ∼= P [X]/(X2 + bX + c) as rings with b, c ∈ P .

Proof. If R ∼=P P 2, then there exist x1, x2 ∈ R such that R = x1P⊕x2P . We claim
that, without loss of generalisation, we can assume x1 = 1. To this end, note that
there exists a, b ∈ P such that 1 = x1a+x2b, and we claim that a and b are coprime.
If they are not coprime, then we define 1 6= g := ggd(a, b). It follows that g is a
product of at least 1 irreducible element, hence g is not a unit in R. As we assumed
that a and b are not coprime, we can divide by g, hence g−1 = g−1x1a+g

−1x2b ∈ R.
Since g is not a unit in R, we get a contradiction, so we conclude that a and b are
coprime. In particular, there exist c, d ∈ P such that ac+ bd = 1. Let these c and d
be given, we then define the basis transformation matrix

A :=

(
a b
−d c

)
.

We have detA = 1 and

A

(
x1
x2

)
=

(
ax1 + bx2
−dx1 + cx2

)
=

(
1

cx2 − dx1

)
,

so we can indeed assume without loss of generalisation that x1 equals 1. It follows
that there exist q, r ∈ P such that x22 = qx2 + r. Let these q, r be given and define

ϕ : P [X]→ R,

x 7→ x2.

It is clear that ϕ is a surjective ring homomorphism and by construction we
have kerϕ = (X2 − qX − r). By the isomorphism theorem we conclude that R
is isomorphic to P [X]/(X2− qX − r) as rings, so the first implication follows. The
other implication of the lemma is straightforward to check. �

Remark 3.3. Let P be a PID and let R be a P -algebra. If R is isomorphic to P 2

as P -modules, then every ideal can be generated by two elements by Lemma 3.1.
Moreover, by Lemma 3.2 we conclude that R is isomorphic to P [X]/(f) as rings
for a monic polynomial f ∈ P [X] of degree 2. It follows that R is a domain if and
only if f is irreducible.
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A concrete example of a ring R such that R ∼= P 2 as P -modules with P a PID
is the ring Z[

√
−3]. Let ρ be a root of x2 + x + 1 with 2ρ = −1 +

√
−3. We

have
√
−3 = 2ρ + 1, hence Z[

√
−3] = Z + 2ρZ. We conclude that Z[

√
−3] is a

subring of Z[ρ] of index 2.

Definition 3.4. We define the absolute value | · | : Q(
√
−3)→ Q by

|a+ b
√
−3| =

√
a2 + 3b2.

Note that this definition coincides with the absolute value on C.

Before we prove what every ideal of Z[
√
−3] looks like, we first prove a technical

lemma. The idea behind the proof of this lemma is the same as in the proof that Z[i]
is a PID, which is proven in [4, Theorem 12.19].

Lemma 3.5. For every z ∈ Q(
√
−3), there exists a q ∈ Z[

√
−3] such that ei-

ther |z − q| < 1 or z − q = ρ.

Proof. For any z = a+ b
√
−3 ∈ Q(

√
−3), with a, b ∈ Q, there exist a0, b0 ∈ Z such

that |a − a0| 6 1
2 and |b − b0| 6 1

2 . It follows that x = a0 + b0
√
−3 is an element

of Z[
√
−3] such that

|z − x|2 = |(a− a0) + (b− b0)
√
−3|2 = |a− a0|2 + 3|b− b0|2 6

(
1
2

)2
+ 3

(
1
2

)2
= 1,

where equality holds if and only if a, b ∈ 1
2 + Z, that is, if and only if there exists

a q ∈ Z[
√
−3] such that z − q = ρ, and the claim follows. �

Lemma 3.6. Every ideal I ⊆ Z[
√
−3] is of the form xZ[

√
−3] or xZ[ρ] for

an x ∈ Z[
√
−3].

Proof. Let I ⊆ Z[
√
−3] be an arbitrary ideal. If I = 0, then certainly I can be

written as 0 · Z[
√
−3] and 0 · Z[ρ], so assume I 6= 0. Let x ∈ I be non-zero such

that x has the smallest absolute value. We claim that I = xZ[
√
−3] or I = xZ[ρ]

holds. To this end, we will first prove I ⊆ xZ[ρ]. Let y ∈ I and define z = y/x.
By Lemma 3.5, there exists a q ∈ Z[

√
−3] such that either |z− q| < 1 or z− q = ρ.

In the first case, we multiply both sides by |x| to get

|y − qx| = |zx− qx| = |x||z − q| < |x|.

Note that y−qx is an element of I by construction, hence y = qx by the minimality
of x, and it follows that y ∈ xZ[ρ]. In the latter case, we multiply both sides by x to
get y−qx = xz−qx = ρx, hence y = (q+ρ)x, so y ∈ xZ[ρ]. Since xZ[

√
−3] ⊆ I holds

by definition of an ideal, we conclude xZ[
√
−3] ⊆ I ⊆ xZ[ρ]. As we have already

shown [Z[ρ] : Z[
√
−3]] = 2, we conclude that every ideal I is of the form xZ[

√
−3]

or xZ[ρ] for an x ∈ Z[
√
−3]. �

Corollary 3.7. Every finitely generated torsion-free module over Z[
√
−3] is of the

form Z[
√
−3]r1 ⊕ Z[ρ]r2 with r1, r2 ∈ Z>0.

Proof. We will show that Z[
√
−3] satisfies all the conditions of Theorem 6.1, the

global version of Theorem 2.16, proven by Bass in [1, Section 7]. First of all, we
claim that Z[

√
−3] has Krull dimension 1. To this end, note that Z[

√
−3]/(x)

is finite if x ∈ Z[
√
−3] \ {0}. As every non-zero prime ideal contains a non-zero

principal ideal, it follows that Z[
√
−3]/p is a finite integral domain, hence a field,

for every non-zero prime ideal p. We conclude that all prime ideals of Z[
√
−3] are

maximal, thus Z[
√
−3] has Krull dimension 1.
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Note that we have the inclusions Z[
√
−3] ⊆ Z[ρ] ⊆ Q[

√
−3] of rings. As Z[ρ]

is a PID by [4, Exercise 12.58c], it follows that Z[ρ] is integrally closed, hence
the integral closure of Z[

√
−3] inside Q[

√
−3] is Z[ρ]. Since Z[

√
−3] is a sub-

ring of index 2 of Z[ρ], we conclude that Z[ρ] is finitely generated as a Z[
√
−3]-

module. Finally, as Z[
√
−3] is Noetherian by Lemma 3.6, we can use Theorem 6.1.

Since xZ[
√
−3] ∼= Z[

√
−3] and xZ[ρ] ∼= Z[ρ] as Z[

√
−3]-modules for all non-

zero x ∈ Z[
√
−3], the claim follows. �

3.2. Rings of power series without linear coefficient. In this section we shall
prove that every ideal of the ring of power series without linear coefficients over a
field K can be generated by two elements. To this end, we first need two important
results.

Lemma 3.8. Let K be a field, let R = K[[X]] and consider f =
∑
n>0 anx

n ∈ R
with ai ∈ K. If a0 6= 0, then f ∈ R∗.

Sketch of the proof. The proof of this lemma is straightforward. One recursively
constructs a power series g =

∑
n>0 bnx

n starting with b0 = a−10 such that fg = 1.
�

Using this lemma one can prove the following theorem.

Theorem 3.9. If K is a field, then R = K[[X]] is a principal ideal domain and
every ideal I ⊆ R is of the form I = (xk) for a k ∈ Z>0.

Sketch of the proof. Pick an f =
∑
i>n anx

n ∈ I, with I an ideal of R, such that n
is minimal. Multiplying by a−1n then yields a−1n f = xn(1+

∑
i>n+1

ai
an
xi−n), where

the latter term is an element of R∗ by Lemma 3.8. �

We now have enough tools for the following theorem.

Theorem 3.10. Let K be a field and let R = {a0 + a1X + . . . ∈ K[[X]] : a1 = 0}.
Every ideal of R can be generated by two elements.

Proof. By Theorem 3.9 it follows that P = K[[X2]] is a P.I.D. As R = P ⊕X3P ,
we conclude that R is isomorphic to P 2 as P -modules. The claim then follows
by Lemma 3.1. �

3.3. A non-example. Let S be a ring such that S ∼= Zn as additive abelian groups
with n ∈ N. Let m ∈ N and define I := mS and R := Z + I. It follows that I is
an R-ideal, and we claim that I cannot be generated by n− 1 or fewer elements as
an R-ideal if m > 1.

Proof. We prove the claim by contradiction, so let m > 1 and assume I can be
generated by n − 1 elements as an R-ideal. Since I and S are R-modules such
that I ⊆ S, we can consider the quotient R-module S/I, which is isomorphic
to mS/mI = I/m2S as R-modules. As I can be generated by n − 1 elements as
an R-module, we conclude that I/m2S can also be generated by n− 1 elements, so
in particular S/I too as they are isomorphic. Since R = Z+ I, it follows that S/I
can be generated by n − 1 elements as a Z-module. As Z-modules however, we
have S/I ∼= Zn/mZn = (Z/mZ)n and as (Z/mZ)n cannot be generated by less
than n elements, we get a contradiction. �



8

4. Describing the double dual of a module

In this section we will characterize the double dual A∗∗ := (A∗)∗ of an R-module A,
which will come in handy for our proof. To this end, we first need the definition of
the localization of a module.

Definition 4.1. Let S be a multiplicatively closed subset of a commutative ring R
with 1 ∈ S and let A be an R-module. The localisation of A with respect to S
is the S−1R-module

S−1A := {〈a, s〉 : a ∈ A, s ∈ S} / ∼,
where ∼ is the equivalence relation

〈a, s〉 ∼ 〈a′, s′〉 ⇔ ∃t ∈ S : t(s′a− sa′) = 0.

Addition and multiplication by S−1R are defined by

〈a, s〉+ 〈a′, s′〉 := 〈s′a+ sa′, ss′〉 , and 〈r, s〉 · 〈a, s′〉 := 〈ra, ss′〉 .

Notation 4.2. We write a/s for the equivalence class of 〈a, s〉. Moreover, for every
prime ideal p ⊂ R, the set S := R \ p is multiplicatively closed with 1 ∈ S, and
we define Ap := S−1A. By [2, Proposition 2.4], it follows that Ap is canonically
isomorphic to Rp ⊗R A.

Example 4.3. Let R be an integral domain with field of fractions K. For every R-
module A, we define the K-vector space KA = K · A := S−1A with S = R \ {0}.
By [2, Proposition 2.4], it follows that K ⊗R A = KA. In particular, we conclude
that rank(A) = dimK(KA).

Lemma 4.4. If A is a torsion-free R-module, then the canonical R-module homo-
morphism from A to KA is injective. In this case we identify A as a submodule
of KA.

Proof. Straightforward to check. �

We defined the K-vector space KA in Lemma 4.3, but it is probably not that clear
why would even define this. To this end, note that vector spaces are easier to work
with than modules.

Remark 4.5. Note that the notation ∗ has several meanings. If R is a ring we
denote the unit group of R by R∗. If R is an integral domain with field of fractions K
and A is an R-module, then A∗ is the dual of A with respect to R. The difference
between the unit group R∗ and the dual of R∗ will be clear from context. Finally,
we denote the dual of the K-vector space KA with respect to K by (KA)∗.

Lemma 4.6. Let R be an integral domain with field of fractions K. If A is a
torsion-free R-module, then the map

σ : K · (A∗) −→ (KA)∗,

f

t
7−→

(
a

s
7→ f(a)

st

)
.

is bijective and K-linear. We will therefore identify K · (A∗) with (KA)∗.

Proof. It is straightforward to check that σ is well-defined, injective and K-linear.
We will prove that σ is also surjective. To this end, let f ∈ (K ·A)∗. As A is torsion-
free, we identify A as a submodule of KA by Lemma 4.4, so we can consider f�A.
Let a1, · · · , an be a set of generators of A. By definition we have f(ai) ∈ K
for 1 6 i 6 n, so there exist si ∈ R and ti ∈ R \ {0} such that f(ai) = si/ti. Now
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define t :=
∏n
i=1 ti, it follows that t 6= 0 as R is an integral domain. By construction

we have tf(ai) = ri/1 for certain ri ∈ R. As all the generators of A are sent to R
by t · (f�A), we conclude that all elements of A are sent to R, hence t · (f�A) ∈ A∗.
It follows that

σ

(
t · (f�A)

t

)
=

(
a

s
7→ t · f(a)

t · s

)
=

(
a

s
7→ f(a)

s

)
=
(a
s
7→ f

(a
s

))
= f,

so σ is indeed surjective. �

We now have enough tools for proving the main result of this section.

Lemma 4.7. Every finitely generated torsion-free module over an integral domain
is torsionless.

Proof. Let R be an integral domain with field of fractions K and let A be a finitely
generated torsion-free R-module. It is straightforward to check that

A∗ = {f ∈ K · (A∗) : f(A) ⊆ R} ,

by using Lemma 4.4. Substituting A by A∗ and using Lemma 4.6 twice yields

A∗∗ = {f ∈ K · (A∗∗) : f(A∗) ⊆ R}
= {f ∈ (K ·A)∗∗ : f(A∗) ⊆ R} ,

where we used that A∗ is torsion-free, since A is torsion-free. Note that K · A is
a finite-dimensional vector space as A is a finitely generated module. We conclude
that K · A is canonically isomorphic to (K · A)∗∗ by [6, Theorem 6.8]. It follows
that

A∗∗ = {x ∈ K ·A : evx(A
∗) ⊆ R}

= {x ∈ K ·A : ∀f ∈ A∗ : f(a) ∈ R} .

Since A is torsion-free, we can identify A as a submodule of KA by Lemma 4.4.
Moreover, for every a ∈ A and f ∈ A∗, we clearly have f(a) ∈ R, so A is a
submodule of A∗∗. It follows that A is torsionless. �

4.1. Continuation of concrete examples. We will now look at a concrete exam-
ple using the trace dual, but before we do this, we introduce some notation.

Notation 4.8. Let P be a PID and R a P -algebra. If R ∼=P P 2, then there
exist q, r ∈ P such that R ∼= P [X]/(X2 − qX − r) as rings, by Lemma 3.2. We
denote the discriminant of X2 − qX − r by D, so D = q2 + 4r.

Corollary 4.9. Let P be a PID and R a P -algebra. If R is an integral domain
such that R ∼=P P 2, then R is isomorphic to P

[√
D+D
2

]
as rings, with D not a

square.

Proof. By Lemma 3.2, there exist q, r ∈ P such that R ∼= P [X]/(f) as rings
with f = X2 − qX − r. If D is a square, then the roots of f are contained
in P , hence f can be written as f = f1f2 for two monic polynomials f1, f2 ∈ P [X].
By Remark 3.3, it follows that R is not a domain, which is a contradiction. We
conclude that D is not a square, hence

R ∼= P [X]/f ∼= P

[
q +
√
D

2

]
∼= Z

[
D +

√
D

2

]
,

as q ≡ q2 ≡ D mod 2. �
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Notation 4.10. Let P be a PID with field of fractions Q and let R be an integral
domain such that R is a P -algebra. Choose a

√
D ∈ R. If R ∼=P P 2, then the

field of fractions of R is given by K = Q[
√
D] with D as in Notation 4.8. For

every α ∈ K we define the multiplication-by-α-map Mα as

Mα : K → K

β 7→ αβ.

Notation 4.11. In the situation of Notation 4.10, if α = a+ b
√
D ∈ K, then Mα

is a Q-linear endomorphism of K. We define the trace of α as

tr(α) := tr(Mα) = tr

(
a bD
b a

)
= 2a ∈ Q.

Indeed, for β = c+ d
√
D ∈ K, we have

Mα

((
1
√
D
)(c

d

))
=Mα(β) = αβ = (a+ b

√
D)(c+ d

√
D)

=
(
1
√
D
)(a bD

b a

)(
c
d

)
.

Moreover, we define the trace dual of R as

D−1 := {x ∈ K : tr(xR) ⊆ P} .

Lemma 4.12. In the situation of Notation 4.10, if R ∼=P P 2, then D−1 = δ−1R
with δ =

√
D.

Proof. We have R = P + ωP , where ω2 = qω + r, with q and r as in the proof
of Lemma 3.2. Note that in order to prove the lemma, it is sufficient to show that,
given an x ∈ K, we have δ−1x ∈ D−1 if and only if x ∈ R. So let x = a+ bω ∈ K
with a, b ∈ Q. As 1 and ω generate R over P , we have δ−1x ∈ D−1 if and only
if tr(δ−1x), tr(δ−1ωx) ∈ P . Using

√
D = −q + 2ω we compute tr(δ−1x) = b

and tr(δ−1ωx) = a+ bq. It follows that δ−1x ∈ D−1 if and only if a, b ∈ P , that is,
if and only if x ∈ R, and the claim follows. �

Lemma 4.13. In the situation of Notation 4.10, if R ∼=P P 2, then K = QR with K
the field of fractions of R and Q the field of fractions of P .

Proof. First of all, we have the ring inclusions R ⊆ QR ⊆ K. As K is the smallest
field containing R, it suffices to prove that QR is a field. Finite field extensions
are algebraic by [4, Corollary 21.6], and because K/Q is a finite field extension
by Notation 4.10, we conclude that a has a minimal irreducible polynomial f overQ.
By clearing out the denominators we can write f as f =

∑
06i6n aix

i with ai ∈ P
and an 6= 0. If a0 = 0, then it follows that f(x) = a1x, hence a = 0. Otherwise,
let b = −a−11

∑
06i6n−1 an+1a

n ∈ QR. We have ab = 1 by construction, thus a is
invertible. �

Notation 4.14. Let P be a PID with field of fractions Q. If A is a P -module, then
we denote the dual of A with respect to P as A† := HomP (A,P ). Moreover,
if QA is a Q-vector space, then we denote the dual of QA with respect to Q
as (QA)† := HomQ(QA,Q). Note that the difference will be clear from context.

Lemma 4.15. In the situation of Notation 4.8, if A is a finitely generated R-
module, then (KA)∗ is isomorphic to (QA)† as Q-vector space via the map

γ : (KA)∗ → (QA)†,

f 7→ (tr ◦ f).
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Proof. It is straightforward to check that γ is injective. By Lemma 4.13 it fol-
lows that KA = QRA = QA. Note that QA is a finite dimensional vector space,
hence (QA)∗ = (KA)∗ and (QA)† are both Q-vector spaces with the same dimen-
sion as QA. It follows that γ is an isomorphism of Q-vector spaces. �

Lemma 4.16. In the situation of Notation 4.10, if A is a finitely generated torsion-
free R-module, then A† = γ(δ−1A∗), with γ the map of Lemma 4.15 and δ =

√
D,

with D as in Notation 4.8.

Proof. By Lemma 4.6, we conclude Q · (A†) = (Q ·A)†, and just as in Lemma 4.7,
it follows that

A† =
{
f ∈ (Q ·A)† : f(A) ⊆ P

}
.

Rewriting the equality using Lemma 4.6, Lemma 4.12 and Lemma 4.15 yields

A† = γ({g ∈ KA∗ : ∀x ∈ A : tr(g(x)) ∈ P})
= γ({g ∈ KA∗ : ∀x ∈ A : ∀y ∈ R : tr(yg(x)) ∈ P})
= γ(

{
g ∈ KA∗ : ∀x ∈ A : g(x) ∈ δ−1R

}
).

Finally note that g(A) ∈ δ−1R if and only if g ∈ δ−1A∗, hence the claim follows. �

Lemma 4.17. In the situation of Notation 4.10, if A is a finitely generated R-
module, then A†† := (A†)† = A∗∗.

Proof. Just as in Lemma 4.7, it follows that

A†† =
{
x ∈ QA : ∀f ∈ A† : f(x) ∈ P

}
.

Rewriting the equation using QA = KA and Lemma 4.16 yields

A†† =
{
x ∈ KA : ∀g ∈ A∗ : ∀y ∈ R : tr(yδ−1g(x)) ∈ P

}
.

Finally, by Lemma 4.12, it follows that

A†† =
{
x ∈ KA : ∀g ∈ A∗ : δ−1g(x) ∈ δ−1R

}
= {x ∈ KA : ∀g ∈ A∗ : g(x) ∈ R} ,

where the latter set is A∗∗ by Lemma 4.7. �

Corollary 4.18. Let P be a PID and let R be an integral domain and a P -algebra
such that R ∼=P P 2. If A is a finitely generated torsion-free R-module, then A is
reflexive.

Proof. It follows that A is a finitely generated torsion-free P -module. As P is
a PID, we can use the structure theorem of finitely generated torsion-free modules
over PIDs, see [4, Theorem 16.5], to conclude that A is a free P -module. If V is a
finite-dimensional vectorspace, then V = V ∗∗, by [6, Theorem 6.8]. The proof of this
theorem only uses that V has a finite basis, hence the theorem also holds for finitely
generated free P -modules. The claim then follows immediately by Lemma 4.17. �

If P is a PID and R is a domain such that R ∼= P 2 as P -modules, then every ideal
of R can be generated by two elements by Lemma 3.1. By Theorem 2.16, it follows
that every ring extension S of R in K, that is finitely generated as an R-module,
is reflexive. We therefore conclude that the corollary proven above follows from a
part of Theorem 2.16 ((1) implies (2)), that we will not prove in this thesis.
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5. Proof of one implication of Matlis’ local theorem

We shall follow the proof of Matlis most of the time and include more details
whenever we feel that it is necessary. Let R be an integral domain with field
of fractions K. Recall that condition (2) of Theorem 2.16 states that every ring
extension S of R in K that is finitely generated as an R-module is a reflexive ring
such that

⋂
n>0 I

n = 0 for every R-ideal I ( S.

Theorem 5.1. Let R be a local Noetherian integral domain. If (2) holds, then R
has property FD, that is, every finitely generated torsion-free R-module is a direct
sum of ideals.

To prove the theorem, we will use the following recursively.

Proposition 5.2. Let R be a local Noetherian integral domain such that (2) holds.
If A is a finitely generated torsion-free R-module of rank greater than 1, then A is
decomposable.

Proof that Proposition 5.2 implies Theorem 5.1. We will prove Theorem 5.1 by in-
duction on the rank of a finitely generated torsion-free module. If a module has
rank 0, then clearly it is an empty direct sum of ideals. Moreover, finitely generated
torsion-free modules of rank 1 are isomorphic to ideals. We use Proposition 5.2 to
conclude that finitely generated torsion-free modules of rank greater than 1 are
decomposable. It then follows that a finitely generated torsion-free module of rank
greater than 1 can be written as a direct sum of two non-zero finitely generated
torsion-free modules. As the rank of modules is additive by Lemma B.3 of the
appendix, the rank of these two modules is lower than the rank of the module we
started with. By the induction hypothesis, we conclude that these two modules can
be written as direct sums of ideals, hence so can the module we started with. We
conclude that any finitely generated torsion-free module is a direct sum of ideals,
that is, R has property FD. �

Sketch of the proof of Proposition 5.2. Let A be a finitely generated torsion-free
module of rank greater than 1. We will construct a chain of strictly increasing
local rings. This chain does not have to end, but if it does, then the last ring
is a principal ideal domain. Moreover, we will prove that either A is a module
for every ring in this chain or A is decomposable. If the chain ends, then A is
decomposable by the structure theorem for modules over principal ideal domains.
If the chain does not end, then A is a module for every ring in the the chain and
we take the union of all the rings. The union is not finitely generated, but it will
be isomorphic to a submodule of A. Over Noetherian rings, submodules of finitely
generated modules are finitely generated, which contradicts the fact that the union
is not finitely generated. �

5.1. Proof that finitely generated torsion-free modules are decomposable.
We will now prove Proposition 5.2. To this end, let R be a local Noetherian integral
domain and let A be a finitely generated torsion-free R-module with rank greater
than 1. We define the trace ideal of A as I :=

∑
f∈A∗ f(A), and we claim that I is

indeed an ideal of R. To this end, note that I is an additive subgroup of R as I is
just a sum of subgroups of R. As rf(a) = f(ra) for every r ∈ R, a ∈ A and f ∈ A∗,
it follows that I is an ideal. As R is a local ring with maximal ideal M , there are
only two cases: I = R and I ⊆M , and we consider both cases separately.



13

5.1.1. The case where the trace ideal equals the whole ring. First assume I = R.
By the following lemma it follows that A is decomposable.

Lemma 5.3. Let R be a local integral domain and let A be an R-module with rank
greater than 1. Denote the trace ideal of A by I =

∑
f∈A∗ f(A). If I = R, then A

is decomposable.

Proof. By the definition of I, it follows that there exists an n ∈ N and ele-
ments f1, . . . , fn ∈ A∗ and a1, . . . , an ∈ A such that 1 =

∑n
i=1 fi(ai). Since R

is a local ring, the sum of two non-units in R is a non-unit by Lemma A.2 of the
appendix. We conclude that there exists an integer i with 1 6 i 6 n such that fi(ai)
is an unit of R. It follows that there exist a ∈ A and f ∈ A∗ such that f(a) = 1.
Note that f(0) = 1 implies R = 0, which contradicts the assumption that R is a
domain, thus if f(a) = 1 for an a ∈ A and f ∈ A∗, then a ∈ A \ {0}. Let these f
and a 6= 0 be given and define

g : R→ A,

r 7→ ra.

Finally, consider the short exact sequence

0 −−→ R
g−−→ A

mod Ra−−→ A/Ra −−→ 0.

Since for every r ∈ R we have f(g(r)) = f(ra) = rf(a) = r, we conclude that
this short exact sequence splits by [4, Theorem 9.3], thus there exists an isomor-
phism A ∼=R R⊕A/Ra. We will now show that neither R = 0 nor A/Ra = 0 holds.
First of all, since R is a domain, we have R 6= 0. Finally, as we assumed that A
is an R-module whose rank exceeds 1, we get a contradiction if A/Ra = 0, as this
would imply that A ∼=R Ra ∼=R R, where we used that ra 6= 0 for all r ∈ R\{0}, as A
is torsion-free and a 6= 0. We therefore conclude that neither R = 0 nor A/Ra = 0
holds, thus A is decomposable. �

5.1.2. The case where the trace ideal is contained in the maximal ideal. Now as-
sume I ⊆M . IfM is invertible, then R is an principal ideal domain by Lemma A.4
of the appendix. Every finitely generated R-module A of a principal ideal domain R
can be decomposed as A ∼=R T (A) ⊕ Rr, with T (A) the torsion submodule of A
and r the rank of A by [4, Theorem 16.5]. It follows that A is decomposable as the
rank of A exceeds 1. IfM is not invertible, then R1 :=M−1 is a ring extension of R
by Lemma A.3 of the appendix. We will now show that A is an R1-module.

Lemma 5.4. Let R be a reflexive local integral domain with field of fractions K
and maximal ideal M . Let A be a finitely generated torsion-free R-module with
trace ideal I, and assume I ⊆M . If M is not invertible, then R1 =M−1 is a ring
extension of R and A is an R1-module.

Proof. For any r ∈ R1, and a ∈ A define

ra : A∗ → K,

f 7→ rf(a).

Since I ⊆ M , it immediately follows that R1 = M−1 ⊆ I−1, and combining this
with f(a) ∈ I yields rf(a) ∈ R, hence ra ∈ A∗∗. Every finitely generated module
of an integral domain has finite rank by Lemma B.2 of the appendix. As A is also
torsion-free, it follows that A is torsionless by Lemma 4.7. Since R is reflexive, every
torsionless R-module of finite rank is reflexive, hence A is reflexive. We conclude
that A = A∗∗, hence ra ∈ A. It follows that A is an R1-module, and the operation
of R1 on A is the natural action inherited from the operation of K on KA. �
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Finally consider the following proposition, which will be proven in Section 5.2

Proposition 5.5. Let R be a local Noetherian domain with field of fractions K.
If R satisfies condition (2) of Theorem 2.16, then we construct a possibly finite
strictly increasing chain of subrings of K

R ( R1 ( R2 ( . . . ,

where Ri+1 = M−1i with Mi the maximal ideal of Ri. Each ring is local except
possibly for the last one if the chain ends. If the chain ends, then the last ring is
a principal ideal domain. Moreover, each ring is generated by two elements as a
module over the previous one.

All the conditions of Proposition 5.5 are satisfied, so let the chain of rings be as
given in the proposition. By the following lemma, we conclude that either A is
an Rn-module for every n > 0 or A is decomposable.

Lemma 5.6. Let R be an integral domain and let A an R-module with rank greater
than 1. Assume that all the conditions of Proposition 5.5 are satisfied, and let the
chain of subrings be as given in the lemma. Then either A is an Rn-module for
every n > 0, or A is decomposable.

Proof. We will prove that A is an Rn-module for every n > 0, where R0 = R, by
induction. First of all, the case n = 0 holds by assumption. Let N ∈ Z>1 be given
and assume that A is an Rn module for all n < N . We will prove that A is anRN
module by showing that RN−1 satisfies all the conditions of Lemma 5.4.

As RN−1 is a subring of K, it follows that RN−1 is an integral domain. Since RN−1
is not the last ring in the chain, we conclude that it is local. Moreover, as A is
a finitely generated R-module, it immediately follows that A is a finitely gener-
ated RN−1 module, as RN−1 is a ring extension of R. Since RN−1 is a ring ex-
tension of R contained in K, and A is a torsion-free R-module, it immediately
follows that A is a torsion-free RN−1-module. As RN−1 is finitely generated as
an R-module, it follows that RN−1 is reflexive by condition (2). Furthermore, as R
and RN−1 are both contained in the same field of fractions K, the rank of A as
an RN−1-module is the same as the rank of A as an R module, which exceeds 1.

Let I be the trace ideal of A as an RN−1-module. If I = RN−1, then A is decom-
posable by Lemma 5.3. Hence without loss of generality, we assume I ⊆MN−1.

If MN−1 is invertible, then RN−1 is an principal ideal domain by Lemma A.4 of
the appendix. It follows that A is decomposable by the same argumentation as in
the first paragraph of Section 5.1.2. Hence without loss of generality, we assume
that MN−1 is not invertible, so M−1N−1 is a ring extension of RN−1 by Lemma A.3
of the appendix. As we assumed that the trace ideal is contained in MN−1, we
conclude that RN−1 satisfies all the conditions of Lemma 5.4, so A is an RN module.
By induction, we conclude that A is an Rn module for all n > 0. �

If the chain of rings ends, then Rn is a principal ideal domain for some n ∈ Z>0,
which implies that A decomposes just as in the first paragraph of Section 5.1.2,
by [4, Theorem 16.5]. Without loss of generality we therefore assume that the
chain does not end. We then define S :=

⋃
n>0Rn, with R0 = R. It follows

that S is an integral domain, and we will prove that S is not finitely generated as
an R-module.

We will prove this claim by contradiction, so assume there exist s1, ..., sn ∈ S
with S =

∑n
i=1 siR. For every si there exists a smallest index j such that si ∈ Rj ,
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and let m be the maximum of these smallest indices. We then have si ∈ Rm for
all 1 6 i 6 n, so by the definition of an R-module, we have S =

∑n
i=1 siR ⊆ Rm,

which implies S = Rm. For every k > m, it follows that Rk = Rm, so the chain
ends, which is a contradiction as we assumed that the chain does not end.

Note that A is an Rn-module for every n, such that the operation of Rn on A
is the natural one extending the operation of R on A for all n, hence A is an S-
module. For every a ∈ A we then have Sa ⊆ A, so Sa is an R-submodule of A
for every a ∈ A. As A is a torsion-free R-module, we conclude that A is a torsion-
freeK-module. Since S is contained inK, it immediately follows that A is a torsion-
free S-module. Hence, if a 6= 0, then S is isomorphic to Sa. As R is Noetherian,
it follows that R-submodules of finitely generated R-modules are finitely generated
by [2, Proposition 1.4]. We now have a contradiction, as Sa is finitely generated and
isomorphic to S as an R-module, while S is not finitely generated as an R-module.
This finishes the proof of Proposition 5.2. �

5.2. Some technical results. Before we prove Proposition 5.5 about the existence
of the chain of rings, we first prove several other results.

Theorem 5.7 (Hilbert Basis Theorem). If a ring R is Noetherian, then R[X] is
Noetherian.

Proof. For a proof, see [2, Theorem 1.2]. �

We will use the following corollary of the Hilbert Basis Theorem extensively.

Corollary 5.8. If R0 is a Noetherian ring, and R is a finitely generated algebra
over R0, then R is Noetherian.

Proof. For a proof, see [2, Corollary 1.3]. �

Lemma 5.9. Let R be an integral domain with field of fractions K and let I be a
fractional ideal of R. If f ∈ I∗, then there exists an x ∈ K such that f = (i 7→ xi).

Proof. As I is a fractional ideal, there exists a non-zero r ∈ R such that rI ⊆ R.
For any i, j ∈ I we then have rif(j) = f(rij) = rjf(i). In particular, if i, j 6= 0,
then x := f(i)/i = f(j)/j ∈ K and the claim follows immediately. �

Lemma 5.10. Let R be an integral domain. If I is a non-zero fractional R-ideal,
then Lemma 5.9 gives us a natural isomorphim I−1 ∼= I∗ of R-modules.

Proof. Consider

ϕ : I−1 → I∗,

x 7→ (i 7→ xi).

It is straightforward to check that ϕ is an injective R-module homomorphism. We
will now show that ϕ is also surjective, so let f ∈ I∗. By Lemma 5.9, there exists
an x ∈ K such that for all i ∈ I we have f(i) = xi ∈ R. This x satisfies xI ⊆ R,
hence x ∈ I−1. �
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Lemma 5.11. Let R be an integral domain with field of fractions K. If I is a
non-zero fractional R-ideal, then I−1−1 = I∗∗.

Proof. For any x ∈ K we have x ∈ I−1−1 if and only if xy ∈ R for all y ∈ I−1, that
is, if and only if f(x) ∈ R for all f ∈ I∗, where we used Lemma 5.10. We conclude
that x ∈ K if and only if evx ∈ I∗∗, that is, if and only if x ∈ I∗∗, and the claim
follows. �

Corollary 5.12. Let R be a reflexive Noetherian integral domain with field of
fractions K. If I is a non-zero fractional R-ideal, then I = I−1−1.

Proof. For any fractional R-ideal I, it follows that rI ⊆ R is an R-ideal. Since R is
Noetherian, we conclude that rI is finitely generated, hence I is finitely generated.
As every fractional R-ideal is contained in K, we conclude that the fractional ideals
of R are torsion-free as R-modules. By Lemma 4.7, it follows that every fractional
ideal is torsionless, and by Lemma B.2, it follows that every fractional ideal has
finite rank. Since R is reflexive, we conclude that I = I∗∗ for every non-zero
fractional ideal I, and the claim then follows by Lemma 5.11. �

Lemma 5.13. Let R be a reflexive Noetherian integral domain and let I be the set
of non-zero fractional ideals of R. Then

π : I→ I,

I 7→ I−1,

is an inclusion-reversing bijection.

Proof. For any I, J ∈ I such that I ⊆ J we have π(J) = J−1 ⊆ I−1 = π(I), so π
is inclusion-reversing. By Corollary 5.12, the inverse of π is π itself as

π(π(I)) = π(I−1) = I−1−1 = I,

for all I ∈ I, so π is bijective. �

Lemma 5.14. If R is a reflexive Noetherian integral domain and M is a maximal
ideal of R, then M−1/R ∼= R/M as R/M -vectorspaces.

Proof. By Lemma 5.13, we have a one-to-one correspondence between fractional
ideals I such that M ⊆ I ⊆ R and fractional ideals J−1 with R−1 ⊆ J−1 ⊆ M−1.
As R and R−1 are both R-modules such that RR = R and RR−1 = R and the
inverse of an ideal is unique by Remark 2.19, we have R = R−1. As fractional
ideals contained in R are actual ideals of R, andM is a maximal ideal, we conclude
that there are no proper non-maximal ideals I such that M ⊆ I ⊆ R, so by the
argument above, there are no fractional ideals J−1 such that R−1 ( J−1 (M−1.

It is straightforward to check thatM−1/R is an R/M vector space. Since there is a
one-to-one correspondence between the set of R-submodules ofM−1 containg R and
the set of R-submodules of M−1/R, we conclude that M−1/R has no proper non-
zero R-submodules, as we have just shown that M−1 has no proper R-submodules
that strictly contain R. In particular, we conclude that M−1/R has no proper
non-zero R/M -submodules, so M−1/R has no proper non-zero R/M -subspaces.
It follows that M−1/R is a one-dimensional R/M -vectorspace, hence M−1/R is
isomorphic to R/M as R/M -vectorspace. �



17

Corollary 5.15. Let R be a reflexive integral domain. If M is a maximal ideal
of R, then M−1 is generated by two elements over R.

Proof. Consider the following exact sequence of R-modules

0 −−→ R −−→ M−1 −−→ M−1/R −−→ 0.

Both R and R/M are generated by 1 element over R, and because M−1/R is
isomorphic to R/M as R/M -vectorspace, we conclude that M−1 can be generated
by two elements as an R-module. �

Lemma 5.16. Let R be a local integral domain with non-invertible maximal idealM .
Then all maximal ideals of the ring M−1 contain M .

Proof. Let N be a maximal ideal ofM−1. AsM is not invertible, it follows thatM
is anM−1-ideal. We conclude thatM+N is anM−1-ideal, hence eitherM+N = N
or M + N = M−1 holds. If M + N = N , then M is contained in N and we are
done. If M +N =M−1, we consider the inclusion

R/((M +N) ∩R) ↪−−→ M−1/(M +N) = 0.

We have M ⊆ R, so (M +N) ∩ R = M + (N ∩ R). Moreover, as N is a maximal
ideal of M−1 we have 1 /∈ N , thus N ∩ R 6= R. It follows that N ∩ R is contained
in the maximal ideal of R, thus (M +N) ∩R =M + (N ∩R) =M . In particular,
we have R/((M +N)∩R) = R/M 6= 0 mapping injectively to 0, which is clearly a
contradiction. �

Lemma 5.17. Let R be an integral domain and let S ⊇ R be an R-algebra generated
by r elements as an R-module for an r ∈ Z>1. Let M be a maximal R-ideal, and
letM be the set of maximal ideals of S that contain M . Then #M 6 r.

Proof. We will prove the claim by contradiction, so assume #M > r. We then
have M ⊆

⋂
N∈MN by Lemma 5.16, so the canonical ring homomorphism

k = R/M ↪−−→ S/
⋂

N∈M
N,

is well-defined. Since 1 does not get mapped to 0, it is a non-zero ring homomor-
phism from a field to a ring, hence it is injective. Note that the right-hand side
is a k-vectorspace. Moreover, since S can be generated by r elements over k, we
conclude that the dimension of the right-hand side as a k-vector space is less than
or equal to r. Suppose M′ ⊆ M has r + 1 elements. As distinct maximals ideals
are pairwise coprime, the chinese remainder theorem yields a ring isomorphism

S/
⋂

N∈M′
N ∼=

∏
N∈M′

(S/N),

which is also a k-module isomorphism. Because S/N 6= 0 for all N ∈M′, the right
hand side is a k-vectorspace with dimension greater than or equal to r + 1, which
is a contradiction. �

Combining Lemmas 5.16 and 5.17, we get the following.

Corollary 5.18. Let R be a local integral domain with non-invertible maximal
ideal M . If A is an R-algebra generated by n elements as an R-module, then A is
a semi-local ring with at most n distinct maximal ideals. �
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Corollary 5.19. In the situation of Lemma 5.17, if #M = r, then
⋂
N∈MN =M .

Proof. If #M = r, then we have canonical k-module homomorphisms

k = R/M ↪−−→ S/M −−� S/
⋂

N∈M
N,

where S/M has dimension less than or equal to r as a k-vectorspace, and the
right-hand side has dimension greater than or equal to r as a k-vectorspace. We
therefore conclude that S/M and the right-hand side are canonically isomorphic,
hence

⋂
N∈MN =M . �

Lemma 5.20. Let R be a semi-local integral domain. If I is a non-zero R-ideal,
then I is invertible if and only if I is principal.

Proof. If I is principal, then there exists an x ∈ I such that xR = I. If we
define J := x−1R, then IJ = xRx−1R = xx−1RR = R, hence I is invertible.

If I is invertible, then II−1 = R. Let M1, . . . ,Mn be the maximal ideals of R.
For all i with 1 6 i 6 n there exist ai ∈ I and bi ∈ I−1 such that aibi /∈ Mi.
By the Chinese remainder theorem, there exist λi ∈

(⋂
j 6=iMj

)
\ Mi. Finally

define a :=
∑

16i6n λiai and b :=
∑

16j6n λjbj . We claim that ab is not contained
in any maximal ideal.

To this end, assume there exists a k with 1 6 k 6 n such that
∑
i,j λiλjaibj ∈Mk.

If i and j are not both equal to k, then λiλjaibj is contained inMk. By subtracting
all these terms from ab, we conclude that λkλkakbk is contained in Mk. As Mk

is a prime ideal, it follows that either λk or akbk is contained in Mk. Both cases
lead to a contradiction, thus we conclude that ab is not contained in Mk for any k
with 1 6 k 6 n. It follows that ab is a unit, hence

(a) ⊆ I ⊆ abI ⊆ aII−1 = aR = (a),

and I = (a). �

Lemma 5.21. Let R be a local Noetherian integral domain with maximal ideal M .
Moreover, assume (2) of Theorem 2.16 holds. If M is not invertible, then M is a
principal ideal of R1 =M−1.

Proof. For every integral ideal I of R1, we denote its inverse as an R1-ideal by

I# := {x ∈ K : xI ⊆ R1} .
Note that M is an R1-ideal, as we assumed that M is not invertible. We will
prove the lemma by contradiction, so assume M is not a principal ideal of R1.
By Corollary 5.15, we conclude that R1 is finitely generated over R. As ring
extensions that are finitely generated as modules over local rings are semi-local
by Corollary 5.18, it follows that R1 is a semi-local ring. Since M is not a principal
ideal of R1, we conclude that M is not an invertible ideal of R1 by Lemma 5.20,
hence MM# 6= R1.

As MM# is an R1, it follows that MM# is contained in a maximal ideal N of R1,
so let such an N be given. We then have

(N#M)M# = N#(MM#) ⊆ N#N ⊆ R1.

Since M## =
{
x ∈ K : xM# ⊆ R1

}
, we conclude N#M ⊆M##.

As R1 is a ring extension of R in K that is finitely generated as an R-module, it
follows that R1 is a reflexive ring by (2) of Theorem 2.16. As R1 is Noetherian
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by Corollary 5.8, we can use Lemma 5.12, which implies M## = M . It follows
that N#M ⊆ M## = M , so N# ⊆ M−1 = R1. The inclusion R1 ⊆ N# holds by
definition, hence we have equality: N# = R1. As N## = N , it follows that

N = N## = (N#)# = (R1)
# ⊇ R1,

which is a contradiction as N is a maximal ideal of R1. �

Lemma 5.22. Let R be a local Noetherian integral domain with maximal non-
invertible ideal M and assume (2) of Theorem 2.16 holds. If R1 = M−1 is not a
local ring with maximal ideal N )M , then R1 is a principal ideal domain.

Proof. AssumeR1 is not a local ring with maximal idealN )M . AsR1 is generated
by two elements as an R-module by Corollary 5.15, we conclude that R1 contains
at most two maximal ideals by Corollary 5.18. We will consider two cases: the
ring R1 is local, or R1 has two distinct maximal ideals. In the first case, it follows
that R1 is a local ring with maximal ideal M , as we assumed that R1 is not a local
ring with maximal ideal N )M .

As M is not invertible as an R-ideal, we conclude that R1 is a ring extension of R
by Lemma A.3 of the appendix, hence R1 is Noetherian by Corollary 5.8. Moreover,
we conclude that M is a principal ideal of R1 by Lemma 5.21. By (2) of Theorem
2.16, we have

⋂
n>0M

n = 0, and by using the same arguments as in the last
paragraph of the proof of Lemma A.4 of the appendix, we conclude that R1 is a
principal ideal domain.

In the latter case, the ring R1 has two maximal ideals N1, N2, and by Lemma 5.16 it
follows that M ⊆ N1 and M ⊆ N2. By Corollary 5.19 we then have M = N1 ∩N2,
and because distinct maximal ideals are coprime we conclude that M = N1N2. By
using Lemma 5.20 and Lemma 5.21, it follows that N1 and N2 are principal ideals
of R1.

Since R1 is a ring extension of R in K that is finitely generated as an R-module,
it follows that R1 is a reflexive ring such that

⋂
n>0 I

n = 0 for all ideals I ⊆ R1,
since we assumed (2) of Theorem 2.16. Let I ⊆ R1 be an ideal. It follows that
there exist ni ∈ N such that I ⊆ Nni

i and I 6⊆ Nni+1
i with i ∈ {1, 2}.

As N1 and N2 are coprime, so are Nn1
1 and Nn2

2 , hence I ⊆ Nn1
1 ∩N

n2
2 = Nn1

1 Nn2
2 .

Multiplying both sides by N−n1
1 N−n2

2 yields N−n1
1 N−n2

2 I ⊆ R. If N−n1
1 N−n2

2 I is
contained inN1, then I ⊆ Nn1+1

1 Nn2
2 ⊆ N

n+1
1 , which is a contradiction. By symme-

try, we conclude that N−n1
1 N−n2

2 I is not contained in N2, hence N−n1
1 N−n2

2 I = R.
We therefore conclude I = Nn1

1 Nn2
2 , which is a principal ideal as both N1 and N2

are. It follows that R1 is a principal ideal domain. �

We remind the reader that the goal of this section was to prove Proposition 5.5
about the existence of the chain of rings used in Section 5.1.2. We finally have
enough tools to prove it, and for convenience we state the proposition again.

Proposition 5.23 (Proposition 5.5). Let R be a local Noetherian domain with field
of fractions K. If R satisfies condition (2) of Theorem 2.16, then we construct a
possibly finite strictly increasing chain of subrings of K

R ( R1 ( R2 ( . . . ,

where Ri+1 = M−1i with Mi the maximal ideal of Ri. Each ring is local except
possibly for the last one if the chain ends. If the chain ends, then the last ring is
a principal ideal domain. Moreover, each ring is generated by two elements as a
module over the previous one.
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Proof. We construct the chain recursively. Denote R by R0, and let Mi be the
maximal ideal of Ri. Let n ∈ Z>0 and assume we constructed the chain as in the
proposition up to and including Rn.

First of all note that Rn is a ring extension that is finitely generated as an R-
module, as each ring is generated by two elements as module over the previous
one. If Mn is invertible, then Rn is a principal ideal domain by Lemma A.4.
Hence, without loss of generality, we assume thatMn is not invertible, which implies
that Rn+1 = M−1n is a ring extension of Rn by Lemma A.3. Note that Rn+1 is
a subring of K, hence Rn+1 is an integral domain. In particular, we conclude
that Rn+1 is an R-module. As Rn is reflexive, it follows that Rn+1 is generated by
two elements over Rn as an R-module by Corollary 5.15. By Corollary 5.8 it then
follows that Rn+1 is Noetherian.

If Rn+1 is a local ring, then either Mn is the maximal ideal of Rn+1, or Mn is
strictly contained in the maximal ideal of Rn+1, as proven in Lemma 5.16. Note
that if Mn is the maximal ideal of Rn+1, then the chain stops. By Lemma 5.22
it follows that if Rn+1 is not a local ring, then Rn+1 is a principal ideal domain.
Finally note that every ring extension Rn+1 ⊆ S ⊆ K that is finitely generated as
an Rn+1-module is also finitely generated as an R-module. The claim then follows
by induction. �
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6. Proof of the implication of Section 5 in a global setting.

In the section, we will give the first part of a proof of Theorem 5.1 in a more
global setting. Recall that condition (2) of Theorem 2.16 states that every ring
extension S of R in K that is finitely generated as an R-module is a reflexive ring
and satisfies

⋂
n>0 I

n = 0 for every R-ideal I ( S.

Theorem 6.1. Let R be a Noetherian integral domain with Krull dimension at
most 1. Moreover, assume that the integral closure R′ of R, inside its field of
fractions K, is a finitely generated R-module. If (2) holds, then R has property FD.

This is a slightly simplified version of one of the implications proven in [1]. Bass
does not require R to be an integral domain, but uses the weaker assumption that R
has no nilpotent elements instead. To prove this theorem, the following will be used
recursively.

Proposition 6.2. Let R be a reflexive Noetherian integral domain with Krull di-
mension at most 1. Moreover, assume that the integral closure R′ of R, inside its
field of fractions K, is a finitely generated R-module. If A is a reflexive finitely
generated R-module of rank greater than 1, then either A is decomposable, or A is
an S-module for a ring extension S of R that satisfies R ( S ⊆ R′.

Before we prove a part of the proposition, we first need some other results.

Lemma 6.3. Let R be an integral domain. If A is a non-zero reflexive R-module
with trace ideal U :=

∑
f∈A∗ f(A), then U−1 is a ring extension of R and A is

a U−1-module.

Proof. Let a =
∑
fi(ai) ∈ U and x ∈ U−1. We have xfi(A) ⊆ R for all i,

hence xfi ∈ A∗ for all i. It follows that xa =
∑

(xfi)(ai) ∈ U , thus U−1U ⊆ U .
We then have

U−1U−1U ⊆ U−1U ⊆ U,

so U−1 is a ring extension of R and U is a U−1-module. Moreover, it also fol-
lows that A∗ = HomR(A,R) = HomR(A,U) is a U−1-module. Finally note that,
if f ∈ Hom(A∗, R) = A∗∗ and x ∈ U−1, then

xf(A∗) = f(xA∗) ⊆ f(A∗) ⊆ R,

hence xf ∈ A∗∗. As A is reflexive, we conclude xf ∈ A, hence A is a U−1-
module. �

Lemma 6.4. Let R be a Noetherian domain with Krull dimension at most 1 with
field of fractions K. Let R′ be the integral closure of R inside K. If R′ is a finitely
generated R-module, then there are only finitely many maximal ideals m ( R such
that Rm 6= R′m.

Proof. Let s 6= 0 be the product of the denominators of the generators, it follows
that sR ⊆ sR′ ⊆ R. If sRm = Rm then sRm = sR′m hence Rm = R′m, so it
suffices to prove that the set {m : sRm 6= Rm} is finite. As sRm 6= Rm if and only
if s /∈ R∗m, that is, if and only if s ∈ m, we conclude

{m : sRm 6= Rm} = {m : s ∈ m} = {maximal ideals ofR/(s)} .
Every chain of prime ideals of R/(s) correspondents to a chain of prime ideals of R
containing s. It follows that dim(R/(s)) 6 dim(R) − 1, as we can always add the
prime ideal (0) to a chain of prime ideals of R/(s). We conclude dim(R/(s)) 6 0,
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hence every prime ideal of R/(s) is maximal. By [2, Theorem 2.14], it follows
that R/(s) has only finitely many maximal ideals. �

Lemma 6.5. In the situation of Lemma 6.3, if there are only finitely many maximal
ideals m ( R with the property that Rm 6= R′m, then there exist f ∈ A∗ and x ∈ A
such that f(x) /∈ m for all maximal ideals m ( R with Rm 6= R′m and U 6⊆ m.

Proof. Let m1, . . . ,mn be all the maximal R-ideals that satisfy both Rmi
6= R′mi

and U 6⊆ mi for 1 6 i 6 n. For all i, there exist fi ∈ A∗ and xi ∈ A such
that fi(xi) /∈ mi. By the Chinese remainder theorem, there exist yi ∈

⋂
j 6=imj \mi.

Now define f =
∑

16i6n yifi and x =
∑

16i6n yixi. By the same argumentation
as in the last paragraph of the proof of Lemma 5.20, replacing λi by yi and fi(xj)
by aibj , it follows that f(x) is not contained in Mi for all i. �

Lemma 6.6. Let R be an integral domain. Then the short exact sequence

0 −−→ A −−→ B
g−−→ C −−→ 0

of R-modules splits if and only if it splits locally at every maximal ideal of R.

Proof. Define

I = {r ∈ R : ∃s : C → B : g ◦ s = r · idC} .
It is straightforward to check that I is an R-ideal, and the short exact sequence
splits if and only if 1 ∈ I, that is, if and only if I = R. It follows that the short
exact sequence splits if and only there exist no maximal R-idealm such that I ⊆ m,
that is, if and only if there exist no maximal R-ideal m such that Im ⊆ mRm, if
and only if Im = Rm and 1 ∈ Im for every R-ideal m. The claim then follows
immediately. �

Due to time constraints, we will only sketch the proof of Proposition 6.2.

Sketch of the proof of Proposition 6.2. If U is the trace ideal of A, then U−1 is a
ring extension of R and A is a U−1-module by Lemma 6.3. As U−1 is a fractional
ideal, there exists a non-zero r ∈ R such that rU−1 ⊆ R is an R-ideal. Since R is
Noetherian, we conclude that rU−1 is finitely generated as an R-module, hence so
is U−1. Finite ring extensions are integral, so U−1 is a finitely generated R-module
that satisfies R ⊆ U−1 ⊆ R′.

If U−1 6= R, then we’re done, hence assume U−1 = R. As U is a non-zero R-ideal,
it follows that U = U−1−1 by Lemma 5.12, hence U = U−1−1 = R−1 = R.

By Lemma 6.4, there are only finitely many maximal ideals m ( R that sat-
isfy Rm 6= R′m. By Lemma 6.5, there exist f ∈ A∗ and x ∈ A such that f(x) /∈ m
for all maximal ideals m ( R with Rm 6= R′m. As R \ R∗m = m for all maxi-
mal ideals m ( R, it follows that f(x) ∈ R∗m ∩ R for all maximal ideals m ( R
satisfying Rm 6= R′m. We then claim that the short exact sequence

0 −−→ (Kx ∩A) i−−→ A
g−−→ A/(Kx ∩A) −−→ 0,

splits locally for all maximal ideals m ( R with Rm 6= R′m. To this end, one
defines a section s from Am to (Kx ∩ A)m using f and x. To show that the
short exact sequence also splits for maximal ideal m with Rm = R′m, one checks
that Rm is a PID by checking the conditions of Proposition 5.5. By Lemma 6.6,
the short exact sequence splits globally, hence A = (Kx ∩ A) ⊕ (A/(Kx ∩ A)).
Since neither (Kx ∩ A) = A nor (Kx ∩ A) = 0 holds, we conclude that A is
decomposable. �
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Appendix A. Local rings

Definition A.1. Let R be a commutative ring. A maximal ideal M ⊆ R is a
non-zero R-ideal such that the only R-ideal strictly containing M is R. A local
ring is a commutative ring with exactly one maximal ideal, and a semi-local ring
is a commutative ring with finitely many maximal ideals.

Lemma A.2. If R is a local ring with maximal ideal M , then M = R \R∗.

Proof. If x ∈ R \ R∗, then (x) ( R, hence x ∈ (x) ⊆ M . If x ∈ M , then (x) ⊆ M .
As 1 /∈M , it follows that x ∈ R \R∗. �

Lemma A.3. Let R be a local domain with maximal idealM . IfM is not invertible,
then R1 :=M−1 is a ring extension of R.

Proof. First of all, we have R ⊆ R1 by the definition of R1. Moreover, as M−1 is
an R-submodule of K, the addition on R1 is an extension of the addition on R.
Finally note that if I and J are R-modules, then so are I−1 and IJ . We conclude
that M−1M is an R-module contained in R, hence M−1M is an R-ideal. As M
is not invertible, we have M−1M 6= R, thus M−1M is contained in the maximal
ideal M . Since M is contained in M−1M , as 1 ∈M−1, we have equality, hence

M−1M−1M =M−1M =M ⊆ R,

which implies thatM−1M−1 is contained inM−1. We conclude that multiplication
on R1 yields elements of R1. �

Lemma A.4. Let R be a local integral domain such that
⋂
n>0 I

n = 0 for all
ideals I ( R. Let M be the maximal ideal of R. If M is invertible, then R is a
principal ideal domain.

Proof. Assume M is invertible and let x ∈ M \M2. Note that such an x exists,
as
⋂
n>0M

n = 0 and M 6= 0. We have xM−1 ⊆ R, and because xM−1 is an R-
module, we conclude that xM−1 is an R-ideal.

As we assumed that R is a local ring, it follows that either xM−1 ⊆M or xM−1 = R
holds. In the first case, we can multiply both sides by M to get x ∈M2, which is a
contradiction as we assumed x ∈M \M2. We therefore conclude that xM−1 = R,
and again multiplying both sides by M , we get xR = xM−1M = RM = M ,
hence M = (x).

We have
⋂
nM

n = 0, so for every non-zero R-ideal J , there exists an n ∈ N such
that J ⊆ Mn and J 6⊆ Mn+1. Multiplying both sides by M−n we get JM−n ⊆ R
and JM−n 6⊆ M , and since JM−n is an ideal of R, we conclude JM−n = R.
Multiplying both sides by Mn yields J = RMn =Mn = (x)n = (xn). �
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Appendix B. Finitely generated modules and finite rank

Definition B.1. Let R be an integral domain and let A be an R-module. We say
that A is finitely generated if there exist a1, . . . , an ∈ A such that for all a ∈ A,
there exist r1, . . . , rn ∈ R with a =

∑n
i=1 riai.

Lemma B.2. Let R be an integral domain and let A be an R-module. If A is
finitely generated then A has finite rank.

Proof. First assume A is finitely generated and let a1, . . . , an ∈ A be a generating
set for A. It follows that every a can be written as a =

∑n
i=1 riai for certain ri ∈ R.

We now claim that {(ai ⊗ 1) : 1 6 i 6 n} is a generating set for A⊗R K. To this
end, let a⊗ k ∈ A⊗R K, rewriting then yields

a⊗ k =

(
n∑
i=1

riai

)
⊗ k =

n∑
i=1

(riai ⊗ k) =
n∑
i=1

ri (ai ⊗ k) =
n∑
i=1

rik (ai ⊗ 1) ,

hence rank(A) 6 n, so A has finite rank. �

Lemma B.3. Let R be an integral domain and let

0 −−→ A′ −−→ A −−→ A′′ −−→ 0,

be a short exact sequence of R-modules. Then rank(A) = rank(A′) + rank(A′′).

Proof. For any multiplicatively closed subset S of R, the localization of S at R
denoted by S−1R is flat as an R-module by [2, Proposition 2.5], so tensoring with K
preserves exact sequences. In particular, we conclude that

0 −−→ K ⊗R A′ −−→ K ⊗R A −−→ K ⊗R A′′ −−→ 0,

is a short exact sequence of K-vector spaces. By the additivity of the dimension of
vector spaces, it follows that

dimK(K ⊗A) = dimK(K ⊗A′) + dimK(K ⊗A′′),
and the claim follows. �
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