
Error-Corrected Quantum Cryptanalysis of CSIDH

Isabel Bromfield

Supervised by Chloe Martindale, Ryan L. Mann, and Romy Minko

Level M

40 Credit Points

May 7, 2022

2

Abstract

This thesis conducts an error-corrected quantum cryptanalysis of Commutative

Supersingular Isogeny Diffie-Hellmann (CSIDH). Previous quantum analyses of CSIDH

have been carried out but none so far with error correction, which could provider a lot

more clarity about the post-quantum security of CSIDH and its future in cybersecurity.

In order to do this, the thesis introduces the areas of cryptology, quantum computing

and quantum cryptanalysis before moving into a method of breaking CSIDH using the

Dihedral Hidden Subgroup Problem (DHSP). Techniques from these sections can be

applied to CSIDH to develop an error corrected summary of its security, focusing on

the implementation of surface codes. Estimations of the time and space complexity

it takes to break CSIDH-512 are given, including quantum time complexity and time

with quantumly accessible classical memory. With large amounts of computing power

on unspecialised surface code, CSIDH-512 can be broken in 1.27 days.

i

Contents

List of Figures iii

1 Introduction 1

1.1 Contributions of this Paper . 3

1.2 Preliminaries . 3

1.3 Acknowledgements . 3

2 Background: Cryptography and CSIDH 5

2.1 Cryptography: An Introduction to Subterfuge 5

2.2 Elliptic Curves . 13

2.3 Isogeny-Based Cryptography . 19

2.4 Classical Security of CSIDH . 22

3 Background: an Introduction to Quantum Computing 25

3.1 Quantum Information Theory . 26

3.2 Quantum Computation . 32

3.3 Error-Correction and Surface Code 37

4 Mathematical Basics of Security of CSIDH 52

4.1 Kuperberg’s Algorithm and Alternatives 52

4.2 Applying the Hidden Subgroup Problem to CSIDH 55

4.3 Construction of a Reduction to CSIDH 55

ii

5 Quantum Cryptanalysis of CSIDH 58

5.1 Literature Review . 59

5.2 Error Corrected Quantum Cryptanalysis of CSIDH 64

6 Conclusion 69

A Appendix 74

Bibliography 78

iii

List of Figures

2.1 Caesar Cipher Wheel . 7

2.2 Public and Private Keys . 9

2.3 Diffie-Hellman Key Exchange . 12

2.4 Elliptic Curves . 13

3.1 A Toffoli Gate . 36

3.2 A CNOT Gate . 37

3.3 Error Correction Circuit . 38

3.4 Shor Code Circuit . 38

3.5 Surface Code Example . 40

3.6 Surface Code Correction Cycle . 42

3.7 A Data Qubit . 43

3.8 Surface Code Example 2 . 45

3.9 Surface Code Example with Highlighted Qubits 46

3.10 A Line of Qubits in Surface Code . 46

3.11 Surface Code with Holes . 47

3.12 The Surface Code Error Possibilities . 51

5.1 CSIDH Table . 60

5.2 Bonnetain and Schrottenloher Table . 61

5.3 Collimation Sieve . 62

1

Chapter 1

Introduction

Security makes up a more significant part of our online experience than most people

realise. Almost all of our activities online need to be protected against attackers who

might want to steal personal data, impersonate organisations or force us to download

ransomware on our computers. With more and more of our lives being affected by the

internet, being secure online has never been more important.

The advent of quantum computers has brought with it a shift in how we view

security. Mathematical principles that formed the basis of the security of online

transactions, like the discrete logarithm problem, have been shown to be insecure

against algorithms employable by quantum computers. Shor’s algorithm [1] revealed

the first significant evidence that quantum computers could make intractable problems

tractable, if not easy, to break and created a new area of research that is growing every

day.

To break the current algorithms used to transfer our information securely, quan-

tum computers will need millions of qubits. It is estimated that the size of quantum

computers could double as little as every two years. In as little as 10 years, quantum

computers could exist that render nearly all of the protocols that are widely used today

useless. For this reason, finding schemes and mathematical problems that are resistant

to quantum computers is of paramount importance.

CHAPTER 1. INTRODUCTION 2

One such scheme is CSIDH, standing for Commutative Supersingular Isogeny

Diffie-Hellman, an alternative key exchange protocol similar to the widely-used Diffie-

Hellman. Though a mouthful, this particular scheme rests on the security of a decep-

tively simple problem known as the Dihedral Hidden Subgroup Problem. This problem

has been conjectured to be resistant to quantum computers - though more recent

literature suggests otherwise - and is an area of much interest. Elliptic curves which

form the basis of the theory of isogenies are particularly interesting and presently

widely used on the internet. There is much scope in this area for research.

CSIDH was first published in November 2018 by Wouter Castryck, Tanja Lange,

Chloe Martindale, Lorenz Panny and Joost Renes [2] after a research retreat in Tenerife,

leading to CSIDH to be pronounced as ‘sea-side’. Since its publication, CSIDH and

its offshoot signature protocol SeaSign have been the subject of several publications

providing speedups [3, 4] and assessing its possible use as a new standard in quantum

resistant protocols.

CSIDH narrowly missed out on applying for the NIST Post-Quantum Cryptography

Standardization entrance [5]. NIST, the National Institute of Standards and Technology

in the U.S.A. are holding a competition to decide what conjectured quantum-resistant

protocol will be standardised and used by many systems all over the world. CSIDH’s

security can be measured against NIST’s various ‘levels’ of security [6], and the original

paper proposed security meeting levels 1,2 and 3 [2].

Since the paper’s publication, various responses have focused on the protocol’s

security against quantum attacks; mainly on the two parts of evaluating the ‘group

action’ and a sieve that combines states to give information on a secret key. These

papers theorise that CSIDH does not have necessary properties to reach event NIST

level 1 security [7, 8], and demonstrate areas of the protocol that could be solved in

quantum subexponential time. However, these papers do not consider the errors that

arise implementing code in quantum computers, something that will greatly increase

the ‘cost’ of an attack on CSIDH.

CHAPTER 1. INTRODUCTION 3

1.1 Contributions of this Paper

Quantum computers are much more vulnerable to random errors occurring - like bit

flips or phase flips of the ‘qubits’ in the system. Error correction, detailed in Chapter 3,

is an area of much interest in how it prevents or detects these errors from occurring

and helps quantum computers to function correctly. Implementations of quantum

computers that utilise error correction tend to use a lot of space and time detecting

and correcting these bit and phase flips. This thesis considers the extra overheads that

need to be considered when attacking CSIDH, and gives an estimate for the time and

space complexity of an attack on CSIDH-512 using several metrics. This is considered

for the error-correcting system surface code, one of the most prominent and widely

researched areas in quantum computation. The Surface code is favoured as the leading

method for implementing large-scale quantum computers due to its scalability and

built-in error correction.

1.2 Preliminaries

This thesis assumes an understanding of group theory and Big-O notation. Several

terms referred to in this paper can be found defined in the appendix A.

This thesis gives a detailed background into cryptology and elliptic curve cryp-

tography in chapter 2, CSIDH in Chapter 2, quantum information theory, quantum

computing and surface code in chapter 3 in order to properly explain the significance

of the results obtained in chapter 5. Readers with a background in isogenies and the

surface code can read from chapter 4.

1.3 Acknowledgements

My sincere thanks go to Dr. Chloe Martindale, Dr. Ryan Mann and Dr. Romy Minko,

all of whom were instrumental in guiding the direction and content of this thesis. I

CHAPTER 1. INTRODUCTION 4

would like to thank them for their support throughout the course of the creation of

this paper, for their endless patience with me, and their sharing my enthusiasm for

this exciting subject matter.

5

Chapter 2

Background: Cryptography and

CSIDH

2.1 Cryptography: An Introduction to Subterfuge

Alice and Bob: Your Two Best Friends

Alice and Bob are two people that want to send messages to each other. They want

to do this without fear of having their messages intercepted, altered, or removed by

other people. ‘other people’ tends to mean Eve, an eavesdropper or adversary who

wants to sabotage or overhear their communication in some way. Eve can breach

communication by:

• confidentiality (interception)

• integrity (compromising the message received)

• availability (stopping the message from being received)

Alice, Bob and Eve (and occasionally Charlie might make an appearance) are extremely

common figures in the science of cryptology; they illustrate abstract concepts of

security in a clear an understandable way by acting as two parties in a conversation.

Often, Alice will be sending a message and Bob receiving it, but there is no set format.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 6

We will see these parties repeated again and again in different schemes and proto-

cols, so make sure to say hi!

History

Cryptology refers to the use of code and ciphers to send messages securely (cryptogra-

phy), as well as ways of breaking or weakening these codes (cryptanalysis).

The word cryptography itself comes from the greek 𝑘𝑟𝑦𝑝𝑡𝑜𝑠 and 𝑔𝑟𝑎𝑝ℎ𝑒𝑖𝑛, or

‘hidden writing’ [9]. It’s in ancient Greece, Rome and Egypt that the concept of

cryptography is thought to have been invented separately. In Greece, winding what ap-

peared to be nonsensical letters around a rod of specific diameter revealed the message

vertically down the rod [10]. In Rome, the famous Caesar Cipher was used to convey

messages in the military. The Caesar Cipher is what’s known as a monoalphabetic shift

cipher. This cipher takes one letter at a time (hence monoalphabetic) and ‘shifts’ the

letter a certain number along the alphabet (hence shift). For example, if we chose 3 to

be our shift, the letter 𝑎 would shift to 𝑑 , 𝑏 to 𝑒 and so on. A message of the form

H E L L O W O R L D

with shift 5 would become

M J Q Q T B T W Q I

.

If Alice sends this to Bob, to decrypt the message all he needs is to ‘shift’ the

encrypted message back by 5 letters.

Message H E L L O

Encrypted M J Q Q T

Decrypted H E L L O

We call this shift the key of the cipher - if anyone knows the key, they can then

encrypt and possibly decrypt that cipher.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 7

Figure 2.1: A visualisation of the caesar cipher, called the Caesar Cipher Wheel. With
this tool it is possible to encrypt and decrypt from one wheel to another if the shift is
known [11].

An adversary can try to learn the message by finding the key and using that to

decrypt it, or by encrypting something they think might be similar to the original

message.

Today cryptography has far advanced past monoalphabetic shift ciphers, as has

cryptanalysis. Cryptography pervades every part of our online lives, from sending

and receiving encrypted messages to entering bank details on an online shop. Govern-

ments and businesses are continuously researching new methods of cryptanalysis and

vulnerabilities are being discovered every day.

Security

To give concrete notions of how secure a cryptographic protocol is, we can use Big-O

notation to measure how long it takes to ‘break’ that problem (Appendix A). It’s also

useful to think about under what types of attack a protocol remains unbreakable, or

what resources an adversary might have access to. For example, if an adversary has

access to an oracle (Appendix A) that takes messages into ciphertexts without the

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 8

adversary themselves knowing the secret key, how easy is it for the adversary to find

the secret key? One useful definition is that of perfect security [12]. Let M be the

space of all possible messages and C be the space of all possible ciphertexts.

Definition 2.1 (Perfectly Secure). An encryption/decryption scheme is perfectly

secure if for all𝑚 ∈ M and 𝑐 ∈ C, we have that for an adversary guessing𝑀 given 𝐶 ,

that:

Prob[𝑀 =𝑚 |𝐶 = 𝑐] = Prob[𝑀 =𝑚]

i.e. that knowing the ciphertext of𝑚 gives no useful information about what𝑚

might be.

Another goodmeasure is Kerckhoffs’ Principle that a cryptosystem should be secure

even if everything about the system, except the key, is public knowledge [13]. This

originated with Kerckhoffs’ writings in La Cryptographie Militaire, which put forward

some axioms for security of a cryptosystem [13] (translated by Fabien Petitcolas):

(1) The system must be substantially, if not mathematically, undecipherable;

(2) The system must not require secrecy and can be stolen by the enemy without

causing trouble;

(3) It must be easy to communicate and retain the key without the aid of written

notes, it must also be easy to change or modify the key at the discretion of the

correspondents;

(4) The system ought to be compatible with telegraph communication;

(5) The system must be portable, and its use must not require more than one person;

(6) Finally, given the circumstances in which such system is applied, it must be easy

to use and must neither stress the mind or require the knowledge of a long series

of rules.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 9

Symmetric and Asymmetric Cryptography

Symmetric cryptography refers to a scheme in which Alice and Bob share the same

secret key, used to both encrypt and decrypt data together. However, deciding upon

this key can be risky if they don’t have a secure channel of communication to start

with. A good example is the one-time pad, which is perfectly secure provided Eve

doesn’t have access to the key. If Eve does access the key, the cipher is immediately

compromised.

Figure 2.2: Now both Alice and Bob each have two keys: a public key and a private key.

Asymmetric cryptography or public-key cryptography refers to a scheme in which

there is a pair of keys - one public key which could be known to anyone, and one

private/secret key which is known only to one person - say Alice. The public key is

used to encrypt data which can only be decrypted with the secret key. For example,

Alice might generate both keys, send the public key to Bob (or anyone else that can

see it). Bob can encrypt a message and send that back publicly to Alice, but without

the secret key, no-one can decrypt the message. An excellent example is RSA [14].

The security of asymmetric cryptography often relies on the strength of a central

trapdoor one-way function. A one-way function is one that is easy to compute in one

direction, but very difficult to do in the other direction. A good example is multiplying

primes together; it is easy to compute 3 × 3 × 3 × 2 × 5 × 7 × 11 × 19 = 395010 but

it is computationally difficult to see what 395010 factors into just by looking at it. A

trapdoor one-way function is a one way function where the ‘difficult’ direction can

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 10

Algorithm 1 RSA key generation
Require: primes 𝑝 ≠ 𝑞 of bit length 𝜆
Ensure: a public-private key pair, 𝑝𝑘 and 𝑠𝑘
1: Compute 𝑛 = 𝑝 × 𝑞.
2: Compute 𝜑 (𝑛) = (𝑝 − 1) (𝑞 − 1).
3: Choose 𝑒 coprime to 𝜑 (𝑛).
4: Compute 𝑑 = 𝑒−1(𝑚𝑜𝑑𝜑 (𝑛))
5: Our key pair is 𝑝𝑘, 𝑠𝑘 = (𝑒, 𝑛), (𝑑, 𝑛).

Algorithm 2 RSA Encryption
Require: public key 𝑝𝑘 = (𝑒, 𝑛), a message𝑚 ∈ Z𝑛−1
Ensure: an encrypted message 𝑐 .
1: Compute 𝑐 =𝑚𝑒 (mod 𝑛).
2: Send 𝑐 .

Algorithm 3 RSA Decryption
Require: secret key 𝑠𝑘 , encrypted message 𝑐
Ensure: a decrypted message𝑚.
1: Compute 𝑐𝑑 =𝑚 (mod 𝑛).

become easy if given a vital piece of information. In RSA, this is the exponentiation of

𝑚 = 𝑐𝑑 (mod 𝑛). This is known as the Discrete Logarithm Problem (DLP):

Definition 2.2 (Discrete Logarithm Problem). The Discrete Logarithm Problem is

that for a group G with element 𝑔 ∈ G and 𝑎,𝑛 ∈ Z, given 𝑔, 𝑛 and 𝑔𝑎 (mod 𝑛) find 𝑎.

There are several advantages of using asymmetric cryptography to establish secure

lines of communication [15]. In symmetric key encryption, key distribution must

be done securely - if someone knows the key shared between Alice and Bob, they

can eavesdrop on all communications and even falsify their own. Further, the size of

a key in symmetric cryptography tends to be much longer than one in asymmetric

cryptography; for example, in the One-Time-Pad, the key needs to be at least as long as

the message in order to successfully encrypt it. However in asymmetric cryptography,

the key size is much smaller and can be shared more easily. Asymmetric cryptography

also allows for schemes that focus on identity authentication, i.e., verifying that the

sender of a message is who they claim to be. This is especially useful for modern

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 11

cryptography online, where websites that ask users to input private information need

to be able to verify their identity.

However, asymmetric cryptography tends to have much slower speeds of en-

cryption and decryption than symmetric cryptography [16], making it unsuitable for

sending large messages in bulk.

A compromise between symmetric and asymmetric cryptography is using hybrid

encryption, or combined encryption, which uses a mix of two cryptographic systems

to create a more secure scheme. An example could be deciding on a key and sending it

using asymmetric cryptography, but then using a symmetric encryption scheme to

send messages with the key decided upon. A good example of this is RSA-AES, where

RSA is used to share a key and a symmetric encryption scheme called AES is used to

encrypt the actual message [17, 18].

Key Distribution Schemes

A key distribution or exchange scheme is used in symmetric cryptography. When two

parties need to decide upon a key to use together to send messages, they want this key

to be known by them and only them. In order to do this, they need to decide upon the

key in a secure way, often using asymmetric cryptography

A typical example of a key distribution scheme is the Diffie-Hellman key exchange

protocol [19]. Diffie-Hellman is an example of a non-interactive key exchange [20],

"a method whereby parties who do not share any secret information can generate a

shared, secret key by communicating over a public channel."

The Diffie-Hellman key exchange is, as we will see, instrumental to CSIDH and is

detailed in Algorithms 4 and 5 as well as being pictured in Figure 2.3.

Both Alice and Bob would carry out Algorithm 4 with the same 𝑝 and 𝑔 separately,

only deciding on their secret number 𝑑 and ℎ respectively.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 12

Figure 2.3: The Diffie-Hellman key exchange.

Alice generates key pair (𝑠𝑘𝐷 , 𝑝𝑘𝐷)

Alice sends 𝑝𝑘𝐷 to Bob

Bob generates key pair (𝑠𝑘𝐻 , 𝑝𝑘𝐻)

Bob sends 𝑝𝑘𝐻 to Alice

Alice computes shared secret key 𝑠𝑠𝑘 = (𝑠𝑘𝐷 , 𝑝𝑘𝐻)

Bob computes shared secret key 𝑠𝑠𝑘 = (𝑠𝑘𝐻 , 𝑝𝑘𝐷)

Algorithm 4 Diffie-Hellman Key Generation
Require: a prime 𝑝 and generator 𝑔 of Zp coprime to 𝑝 .
Ensure: A public-private key pair
1: Choose a random 𝑑 ∈ Z
2: Compute the public key 𝑔𝑑 (mod 𝑝)
3: Send the public key out

Algorithm 5 Diffie-Hellman Computation of Shared Secret Key
Require: a secret key 𝑑 , a public key 𝑔ℎ (mod 𝑝)
Ensure: A shared secret key
1: Compute the secret key 𝑠𝑠𝑘 = (𝑔ℎ)𝑑 (mod 𝑝)

At the end of Algorithm 5, if Alice and Bob both send each other their public keys

and exponentiate those by their own secret key, they will have a shared secret key:

𝑠𝑠𝑘 = (𝑔ℎ)𝑑 (mod 𝑝) = 𝑔ℎ𝑑 (mod 𝑝) = 𝑔𝑑ℎ (mod 𝑝) = (𝑔𝑑)ℎ (mod 𝑝)

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 13

Note the commutativity of the group exponents are vital to the shared secret key

being the same. Alice and Bob have shared 𝑔ℎ (mod 𝑝) and 𝑔𝑑 (mod 𝑝) with not just

each other but also with the public, but can do so without fear of their private keys 𝑑

and ℎ being found due to the Discrete Logarithm Problem.

CSIDH is a key exchange system much like Diffie-Hellman; however, instead of

using group exponentiation, it utilises the group action of isogenies, or special maps,

between elliptic curves. In order to introduce CSIDH properly, we need to introduce

the notion of elliptic curves.

2.2 Elliptic Curves

Elliptic curves are a group of curves in 2 dimensional space that obey particular

rules. These curves have particularly interesting properties and many cryptographic

applications. See Figure 2.4 for an illustration.

Figure 2.4: Two elliptic curves - image by GYassineMrabetTalk [21].

Elliptic curves not only contain points defined within the equations below, but

also a uniquely defined point at infinity, O. Together with this point, we can define an

elliptic curve as an abelian group with operations moving from one point to another

within one well-defined curve.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 14

Weierstrauss Curves

There are several ways to define an elliptic curve. One such widely used form is

Weierstrauss form:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

All elliptic curves over a field of characteristic not in {2, 3} can be written in this

form for some 𝑎, 𝑏 ∈ 𝑘 where 𝑘 is a field, under the condition that 4𝑎3 + 27𝑏2 ≠ 0.

Montgomery Curves

Though less widely used than Weierstrauss form, the original CSIDH paper utilises

Montgomery curves for their concise representation:

𝐵𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥 .

Definition 2.3 (k-rational). When a point has co-ordinates in 𝑘 , we call it 𝑘-rational.

The set of all 𝑘-rational points on 𝐸 is called 𝐸 (𝑘).

For 𝐵,𝐴 ∈ 𝑘 we say an elliptic curve 𝐸 defined over 𝑘 is written 𝐸/𝑘 .

An elliptic curve has points that exist in a variety of fields. The constants of an

elliptic curve can be chosen from any field 𝑘 , and points on the resulting curve 𝐸 are

pairs of values (𝜖, 𝜂) in 𝐾2 that solve the curve equation, where 𝐾 is an extension field

of 𝑘 . The exception is the point of infinity.

For example, take the elliptic curve in Weierstrauss form:

𝑦2 = 𝑥3 + 𝑥 − 1

We have that the point (1,−1) exists on the curve and is defined on any field. However,

the point (−1,
√
3) is only defined on the curve for fields containing

√
3.

Groups and the J-Invariant

Notably, often the equation for a Weierstrauss curve is not unique. Two curves are

known as isomorphic when they can be written as the same curve in different co-

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 15

ordinate systems. For example, the curves

𝐸/𝑄 : 𝑦2 = 𝑥3 + 𝑥

𝐸7/𝑄 : 𝑦2 = 𝑥3 + 49𝑥

Are isomorphic over 𝑄 (
√
7).

Definition 2.4 (𝒋-invariant). We call an isomorphism class of curves a j-invariant. A

j-invariant is defined by

𝑗 =
1728 × 4𝑎3

4𝑎3 + 27𝑏2
.

All curves that have the same j-invariant are isomorphic over C. All curves that

are isomorphic over C have the same j-invariant. Thus there exists an equivalence

relation: Two curves isomorphic overC⇔ have the same j-invariant[22].

The Group Law

As stated, the set of points on an elliptic curve over some field can act as a group, and

the sum of two points on a curve can be written using rational functions (fractions of

polynomials) of co-ordinates.

The group law [23] states that any straight line intersects a curve at three points

when accounting for multiplicity and the point at infinity. We can prove that these

three points form a group, and that the sum of these three points is equal to the point

at infinity.

Take two points on an elliptic curve, 𝑃 and 𝑄 . Drawing a line between them will

generally intersect the curve at another point, 𝑅. We take the two points 𝑃 , 𝑄 and

−𝑅 (𝑅 reflected in the x-axis to obtain −𝑅) to form 3 elements of a group, writing that

𝑃 +𝑄 = −𝑅. We take the point at infinity to be the identity. The group law states that

for 𝑃 , 𝑄 , 𝑅 all distinct and not equal to the point at infinity that:

• The identity element of the group is 0, the point at infinity

• 𝑃 +𝑄 + 𝑅 = 0

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 16

If the line only crosses two points 𝑃 and 𝑄 and the point 𝑃 is at the tangent with

the curve, then 𝑃 +𝑃 +𝑄 = 0. If the line only crosses one point 𝑃 and𝑃 is at the tangent

with the curve, then 𝑃 + 𝑃 + 𝑃 = 0.

We can write the group elements of E in a way known as projective co-ordinates.

When adding rational points, rather than continuously dividing by the denominator, it

makes calculations faster to store divisions until the end of the calculation, and instead

write the numerator and denominator as (𝑎, 𝑏) instead of 𝑎/𝑏. Instead of writing a

point as (𝑥/𝑧,𝑦/𝑧) it will instead be written as [𝑥 : 𝑦 : 𝑧]. The point at infinity can be

written [0 : 1 : 0].

One specific type of elliptic curve that CSIDH utilises is a supersingular elliptic

curve:

Definition 2.5 (Supersingular). Let an elliptic curve 𝐸 be defined over the finite field

K𝑞 with characteristic 𝑝 . 𝐸 is known as supersingular ⇔ the kernel of themultiplication-

by-𝑝 map, 𝐸 [𝑝] = {0}

A non-supersingular elliptic curve is called an ordinary elliptic curve. CSIDH is

defined using supersingular curves over F𝑝 for 𝑝 prime. Not only does this increase the

speed at which calculations for CSIDH can be done, it also allows a close-to-minimal

choice for 𝑝 for a secure key exchange, meaning that calculations made by Alice and

Bob are faster, see 2.3.

Supersingular Montgomery curves are especially interesting when it comes to

j-invariants: For a supersingular Montgomery curve with 𝐵 = 1, i.e:

𝐸 : 𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥

The j-invariant is exactly the constant 𝐴. 𝐴 uniquely defines all such elliptic curves

in a given field - informally referred to as an 𝐴-invariant. We can also note with

relevancy later to CSIDH that for a curve of this form, its F𝑝-isomorphism class (i.e.

the collection of curves isomorphic to a curve with the j-invariant 𝐴) is uniquely

determined by 𝐴 [2].

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 17

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP is a variation on the Discrete Logarithm Problem, see 2.1, that showcases

the uses of elliptic curves in cryptography.

Take any 𝑛 ∈ Z and a curve 𝐸. We can define an automorphism 𝑃 in 𝐸, where:

[𝑛]𝑃 = 𝑃 + 𝑃 + ... + 𝑃 (n times)

This is the elliptic curve analogue of exponentiation in the finite field setting.

The ECDLP is the problem of computing the inverse map, 𝑛 ∈ 𝑍 from [𝑛]𝑃 . For

most curves if 𝑃 has prime order 𝑞 then the best known algorithm to get 𝑛 from 𝑃 has

time complexity𝑂 (√𝑞). This time complexity is achievable for any 𝐸, i.e. there are not

any known ways of making use of the specific structure of an elliptic curve to speed

up finding 𝑛.

The 𝑛-torsion subgroup of 𝐸 is the kernel of [𝑛], meaning the set of points mapped

to the point at infinity O under multiplication by 𝑛.

The ECDLP is widely used to ensure security in protocols today: ECDSA and

EdDSA, see 2.2, both rely on the ECDLP, and Whatsapp uses a combination of several

protocols in its system including Elliptic Curve Diffie-Hellman (ECDH).

Isogenies

The basic definition of an isogeny is that it is a map with particularly nice properties.

We have defined elliptic curves and noted an algebraic group structure. An isogeny is

a non-zero map between two elliptic curves 𝐸1 and 𝐸2 that preserves the properties of

these curves - importantly, the group structure and the 𝑘-rationality of functions. It is

usually described as a map:

𝜙 : (𝑥,𝑦) −→ (𝑓 (𝑥,𝑦), 𝑔(𝑥,𝑦))

where 𝑓 (𝑥,𝑦) and 𝑔(𝑥,𝑦) are rational maps.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 18

Definition 2.6 (Isogeny-Based Definition of Isomorphism). Two elliptic curves

𝐸1 and 𝐸2 defined over a field 𝑘 are isomorphic [24] if there exist isogenies 𝜙1 : 𝐸1 → 𝐸2

and 𝜙2 : 𝐸2 → 𝐸1 whose composition is the identity.

Definition 2.7 (Degree). The degree of an isogeny is the smallest possible degree of

a rational function that expresses the isogeny. The degree is a good measure for the

computational complexity of an isogeny.

Definition 2.8 (Isogenous). Two elliptic curves are isogenous if there exists an isogeny

between them.

Elliptic Curves in Cryptography

Schemes that rely on the ECDLP are prevalent, as mentioned. One such widely used

scheme is the Elliptic Curve Diffie-Hellman key exchange (ECDH)

Elliptic Curve Diffie-Hellman

ECDH is an agreement scheme that allows two parties, each with an elliptic-curve

private key and public key, to establish a shared secret key in much the same way as

ordinary Diffie-Hellman [25].

Regular elliptic curve cryptography uses a property of elliptic curves similar to mod-

ular exponentiation: that is, for points on a curve we have that for ∗ point multiplication

that:

(𝑎 ∗𝐺) ∗ 𝑏 = (𝑏 ∗𝐺) ∗ 𝑎

for a generator 𝐺 of a group, 𝑎 Alice’s private key and 𝑏 Bob’s private key.

Alice and Bob both publicly decide on a curve 𝐸 and generator point on that curve

𝐺 , and both secretly decide on a point 𝑎 and 𝑏 respectively. They then both share𝐺 ∗ 𝑎

and 𝐺 ∗ 𝑏 respectively, publicly over the insecure channel they are using. Once Alice

has received Bob’s public key - 𝐺 ∗ 𝑏, she can multiply it by her own secret key 𝑎 to

get (𝐺 ∗ 𝑏) ∗ 𝑎. Bob can do the same with Alice’s public key to get (𝐺 ∗ 𝑎) ∗ 𝑏. Since

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 19

(𝑎 ∗𝐺) ∗ 𝑏 = (𝑏 ∗𝐺) ∗ 𝑎, Alice and Bob have the same shared secret key they can now

use in symmetric cryptography.

Eve’s problem is to find (𝑎 ∗𝐺) ∗ 𝑏 given 𝐸, 𝐺 , 𝐺 ∗ 𝑏 and 𝐺 ∗ 𝑎. The difficulty of

this attack 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 , see Appendix A, to the difficulty of the Elliptic Curve Discrete

Logarithm Problem, a variation on the classic DLP.

It should be noted that ECDH is not the same as CSIDH; the former key exchange

uses operations between points on a single elliptic curve, and the latter uses isogenies

between different elliptic curves as we shall see.

2.3 Isogeny-Based Cryptography

In this section we give background information on SIDH, SIKE [26], CSIDH and give

some introduction to cryptanalysis on CSIDH. TO motivate this section we refer to

the points made in the initial CSIDH paper in 2018 [2]:

Isogeny-based cryptography is a relatively new kind of elliptic-curve cryp-

tography, whose security relies on (various incarnations of) the problem

of finding an explicit isogeny between two given isogenous elliptic curves

over a finite field 𝐹𝑞 . One of the main selling points is that quantum com-

puters do not seem to make the isogeny-finding problem substantially

easier. This contrasts with regular elliptic-curve cryptography, which is

based on the discrete-logarithm problem in a group and therefore falls

prey to a polynomial-time quantum algorithm designed by Shor in 1994.

Isogeny-based cryptosystems do not rely on the Discrete Logarithm Problem and

so are not vulnerable to the same pitfalls the DLP encounters when pitted against

quantum computers, see Chapter 3.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 20

Couveignes-Rostovtsev-Stolbunov (CRS)

CSIDH has its genesis in an isogeny-based cryptosystem first discovered in 1997 by

Couveignes [27] and independently rediscovered by Rostovstev and Stolbunov [28] in

2004. Both papers were published in 2006. The protocol described is a non-interactive

key exchange that relies upon ideal class groups.

In CRS, the space of public keys is the set of F𝑞-isomorphism classes of ordinary

elliptic curves over F𝑞 , where the endomorphism ring 𝐿 of F𝑞 is a given order O in an

imaginary quadratic field and has a defined trace of Frobenius (in CSIDH, the trace of

Frobenius becomes zero).

The ideal-class group𝐶𝑙 (O) of the set of isomorphism classes of elliptic curves over

Fq is the key to constructing a key exchange.This ideal-class group (see Appendix A)

𝐶𝑙 (O) acts via isogenies on the set of elliptic curves with an F𝑞 rational endomorphism

ring O.

In this way, the isogenies of 𝐶𝑙 (O) act much like elements of a finite field do in

Diffie-Hellman; the order in which the elements are composed together does not matter.

In this way, two parties can each compute a public-private key pair composed of: (S]𝐸,

S), a mutual curve decided on publicly together acted upon by a secret isogeny and the

secret isogeny itself.

SIDH and SIKE are a Diffie-Hellman key exchange and key encapsulation method

respectively that utilise isogenies on elliptic curve. While CSIDH and SIDH share much

of the same terminology, CSIDH is based on CRS while SIDH is completely separate

from the two.

CSIDH

CSIDH is a variation on the CRS method for key exchange that uses supersingular

elliptic curves defined over a prime field F𝑝 . We now consider the set only of F𝑝-rational

endomorphisms, which is still an order O in an imaginary quadratic field. 𝐶𝑙 (O) acts

commutatively via isogenies on the set of F𝑝-isomorphism classes of elliptic curves

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 21

with the F𝑝-rational endomorphism ring isomorphic to O (written as E𝑝 (O)).

𝐶𝑙 (O) × E𝑝 (O) → E𝑝 (O)

([𝔄], 𝐸) ↦→ [𝔄]𝐸

Here the isogeny [𝔄] acts upon the curve 𝐸.

The paper was first published in 2018 [2], missing out on submission to the National

Institute of Standards and Technology’s Post Quantum Standardisation Process. This

process hopes to reveal and decide on which supposedly ‘quantum-proof’ protocols

will be used for key exchanges and signatures in the future, preparing for the genesis

of quantum computers, see Chapter 3.

CSIDH’s advantage over CRS resides for the most part in its greater efficiency.The

original paper [2] estimates that at conjectured 64-bit post-quantum security, CSIDH

is over 2000 times faster than CRS. At 80 milliseconds, this is still 10 times slower than

the optimised SIKE implementation submitted to NIST’s Post-Quantum Cryptography

Standardization process [26, 29]. However, this speed is still very practical for use as a

replacement for Diffie-Hellman key exchange. Other advantages include the possibilty

of reusing keys; CSIDH can easily validate public keys, meaning that one party can

securely use a key more than once when their identity has been verified. CSIDH’s

advantages over other schemes submitted to NIST’s Post-Quantum Cryptography

Standardization process include its reliance on only one mathematical problem, namely

the problem of finding an isogeny between two given isogenous curves.

CSIDH’s background with ideal class groups is similar to CRS. However, unlike

CRS, the trace of Frobenius is always zero since curves used in CSIDH are supersingular.

This gives the size of the ideal class group acting on a curve 𝐸 as equal to approximately

2√𝑝 , where 𝑝 is the constant in F𝑝 .

In order to create our isogenies for CSIDH, it is necessary to define the Frobenius

endomorphism in terms of supersingular curves.

Definition 2.9. The Frobenius endomorphism 𝜋 of a supersingular curve 𝐸 defined

over a field F𝑝 obeys the following characteristic equation in 𝐸𝑛𝑑𝑝 (𝐸), where 𝐸𝑛𝑑𝑝 (𝐸)

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 22

is the subring of the endomorphism ring 𝐸𝑛𝑑 (𝐸) consisting of endomorphisms defined

over F𝑝 :

𝜋2 + 𝑝 = 0

We write O = 𝑍 [𝜋] is the F𝑝-rational endomorphism ring, since O always contains

the Frobenius endomorphism 𝜋 . The isogeny is defined between the curve 𝐸 and 𝐸 (𝐴),

where 𝐴 is an invertible ideal of the order O.

CSIDH Keys

The speed of CSIDH’s key exchange relies on the small size of its public keys.

When written in Montgomery form:

𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥

all supersingular elliptic curve isomorphism classes in F𝑝 are uniquely identified by

one number, 𝐴. Thus in order to receive a public key, all that is needed is 𝐴 which can

then be plugged into 𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥 to check for supersingularity. Since 𝐴 is small,

the key exchange is considerably faster than what would be otherwise used with a

different elliptic curve form.

CSIDH Algorithm

Using the paper the key exchange is split into algorithm 6 and algorithm 7. Note the

identical structure to Diffie-Hellman:

2.4 Classical Security of CSIDH

While developed as a post-quantum scheme, it is necessary for CSIDH to be secure

under classical attacks as well. There are a few well-known attacks to find the secret

key of CSIDH.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 23

Algorithm 6 Key generation
Require: (1) large prime 𝑝 = 4 · 𝑙1 · · · 𝑙𝑛 − 1. Here the 𝑙𝑖 are small distinct primes

greater than 2.
(2) supersingular elliptic curve 𝐸0 : 𝑦2 = 𝑥3 + 𝑥 defined over𝑚𝑎𝑡ℎ𝑏𝑏𝐹𝑝
(3) endomorphism ring O = Z[𝜋], created from F𝑝

Ensure: a public-private key pair (𝐴,𝔄)
1: Randomly sample 𝑛 integers, (𝑒1, ..., 𝑒𝑛) from a range −𝑚, ...,𝑚.
2: Use these integers to represent the ideal class:

[𝔄]] = [𝔩𝑒11 , ..., 𝔩
𝑒𝑛
1] ∈ 𝐶𝑙 (O)

where 𝔩𝑖 = (𝑙𝑖, 𝜋 − 1). 𝔄 is the private key.
3: Calculate [𝔄]𝐸0 : 𝑦2 = 𝑥3 +𝐴𝑥 + 𝑥 by applying the action of 𝔄 to 𝐸.
4: Find the Montgomery coefficient 𝐴 ∈ F𝑝 of the elliptic curve [𝔄]𝐸0. This is the

public key.

Algorithm 7 Key exchange
Require: (1) Alice’s public-private key pair (𝐴,𝔄)

(2) Bob’s public-private key pair (𝐵,𝔅
Ensure: a shared secret key, the curve 𝐸𝑆 = [𝔄] [𝔅]𝐸0
1: Alice generates sends her public key 𝐴 to Bob over a public channel.
2: Bob also sends his public key 𝐵 to Alice over a public channel.
3: Using Bob’s key 𝐵, Alice verifies the Elliptic curve 𝐸𝐵 : 𝑦2 = 𝑥3 + 𝐵𝑥 + 𝑥 is in the

isogeny class 𝐸𝑙𝑙𝑝 (O, 𝜋) using an algorithm to verify supersingularity.
4: Alice then computes the shared secret key by applying the action of her secret key

to the curve 𝐸𝐵 :
[𝔄]𝐸𝐵 = [𝔄] [𝔅]𝐸0

5: Bob repeats the previous two steps (obtaining 𝐸𝐴) with his own secret key and
Alice’s public key and returns:

[𝔅]𝐸𝐴 = [𝔅] [𝔄]𝐸0

6: The shared secret is the Montgomery coefficient S of the common secret curve

[𝔄] [𝔅]𝐸0 = [𝔅] [𝔄]𝐸0

due to the commutativity of cl(O), with the curve written as

𝐸𝑆 : 𝑦2 = 𝑥3 + 𝑆𝑥2 + 𝑥

.

CHAPTER 2. BACKGROUND: CRYPTOGRAPHY AND CSIDH 24

Brute Force/Exhaustive Key Search

One method of finding the secret curve 𝐸𝑆 in CSIDH implementation is to search

through the group of all possible curves.Another would be to search through all

possible isogenies. These methods could both be conducted through a simple brute

force attack or marginally better with a meet-in-the-middle key search.

Pohlig-Hellman

The collection of Pohlig-Hellman style attacks would rely on the set of elliptic curves

acting as a group; the curves used in CSIDH are not isomorphic to a group with

‘efficiently computable operations’. There is no group linking the curves that we can

compare with the action of the ideal class group. Hence there is no way of using

Pohlig-Hellman style attacks on CSIDH.

25

Chapter 3

Background: an Introduction to

Quantum Computing

Quantum computing began in 1980 [30] with Paul Benioff. The mysterious and often

contradictory area of quantum mechanics could now be applied to computer science

by replacing a typical ‘bit’ with a quantum ‘qubit’, a bit existing in a superposition of 0

and 1.

This idea of a superposition of bits allowed for new areas of mathematics to be

born - quantum information theory and quantum computing. While large-scale quan-

tum computers are still a long way off, the theory has been robustly studied for

decades [31].Quantum effects, including superposition, the ability to ‘entangle’ and

to ‘teleport’ qubits leads quantum computers to possess many interesting abilities.

One of those is speeding up the solving of certain problems. The Discrete Loga-

rithm Problem mentioned earlier in Section 2.1 is the backbone of the security of

RSA/Diffie Hellman/ECDSA and has a subexponential classical time complexity of

RTIME(𝑂 (2(
√
log𝑞 log log𝑞)) (RTIME refers to algorithms which may use random num-

bers in their processing. using the index calculus method [32]). Shor’s algorithm,

published in 1995 [1] details a way of using quantum computation to greatly reduce

the time taken to find the secret keys used in asymmetric cryptosystems that rely on

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 26

the DLP. It can break the DLP in polynomial time, see Appendix A, by using a quantum

computer.

Quantum computers are still a way off from being able to break RSA and AES used

widely today [33]; the largest verified quantum computer is 127 qubits [34], a far cry

from the 20 million needed to break 2048-bit RSA [35]. However, it is certain that

within the next two decades that cybersecurity will need to adapt to this new challenge.

It is expected that quantum computers will render much of existing cryptography

useless, such as RSA, Diffie-Hellman and typical elliptic curve cryptography. This

means that much online traffic would become vulnerable to attack [36].

In response, there is a race to discover new methods of protecting existing algo-

rithms against quantum computers, but more importantly, switching to algorithms

that are known to be quantum safe, i.e., an algorithm where there is no known efficient

(polynomial time) method a quantum computer can use to break it. Luckily, quantum

computers are not useful for everything; lattice-based cryptography and supersingular

elliptic curve isogeny cryptography, which this paper looks at in detail (see Chapter 2),

are quantum resistant and cannot be broken quickly using Shor’s Algorithm [37].

3.1 Quantum Information Theory

Before introducing how breaking CSIDH might work, it is necessary to define the

relevant terms used in quantum information theory and computation. The notation

used for quantum information theory largely follows the Dirac notation [38] widely

used elsewhere in quantum mechanics. Dirac notation writes Hilbert space vectors as

‘kets’, |⟩. The vector 𝜙 is written as |𝜙⟩

An 𝑛-dimensional vector space defined over a field K is a span of basis vectors

|𝑣1⟩ , ..., |𝑣𝑛⟩ with coefficients in K. Any vector in this vector space can be written:

|𝑣⟩ =
𝑛∑︁
𝑗=0

𝑎 𝑗
��𝑣 𝑗 〉

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 27

where 𝑎 𝑗 ∈ Kand
∑𝑛
𝑗=0 |𝑎 𝑗 |2 = 1.

In general, the set of all possible states of a system is called the state space of a

system. In quantum mechanics, the state space is the two-dimensional complex vector

space where all vectors are unit length. The vectors used to represent |0⟩ and |1⟩ must

be linearly independent. Often |0⟩ and |1⟩ are written in the computational basis form

of:

|0⟩ = ©«
1

0
ª®¬

and

|1⟩ = ©«
0

1
ª®¬

If using the computational basis we could write:

©«
1√
2
1√
2

ª®¬ = 1
√
2
|0⟩ + 1

√
2
|1⟩

.

Definition 3.1 (qubit). A qubit or ‘quantum bit’ is a bit that exists in a superposition

of two states: |0⟩ and |1⟩. Any qubit takes the form

𝛼 |0⟩ + 𝛽 |1⟩

such that 𝛼, 𝛽 ∈ C are components of |𝑣⟩ in the basis |0⟩ , |1⟩ and |𝑎 |2 + |𝑏 |2 = 1.

Bras and Kets

In writing vectors this way, Dirac notation allows many other structures to be written

neatly. The complex conjugate of a Hilbert space vector |Ψ⟩ is written as |Ψ⟩† = ⟨Ψ|.

In vector form, this is the complex conjugate transpose.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 28

Inner Product

The inner product of two vectors |Ψ⟩ and |Φ⟩ is written ⟨Ψ|Φ⟩. The inner product

defined on pairs of vectors (|Ψ⟩ , |Φ⟩),in a complex vector space C2 satisfies the prop-

erties:

• ⟨Ψ|Ψ⟩ is real.

• ⟨Ψ|Φ⟩ = ⟨Φ|Ψ⟩.

• ⟨Ψ| (𝑎 |Φ⟩ + 𝑏 |Ω⟩) = 𝑎 ⟨Ψ|Φ⟩ + 𝑏 ⟨Ψ|Ω⟩.

Two vectors |Ψ⟩ and |Φ⟩ are orthogonal if ⟨Ψ|Φ⟩ = 0. Quantum states are also

normalised, i.e., ⟨Ψ|Ψ⟩ = 1. Since |0⟩ = (1, 0) and |1⟩ = (0, 1), we have that ⟨0|1⟩ = 0 =

⟨1|0⟩ and ⟨0|0⟩ = 1 = ⟨1|1⟩.

Operators

The outer product |Ψ⟩ ⟨Φ|, represents matrix multiplication in vector form. An operator

is written as a sum of outer products
∑𝑛
𝑖, 𝑗=0 𝑎 |Ψ𝑖⟩

〈
Ψ𝑗
�� = 1 where 𝑎 ∈ C and |Ψ𝑖⟩ is a

basis vector. Operators act upon vectors to return other vectors.

For example, take the operator 𝑋 .It can be written as 𝑋 = |1⟩ ⟨0| + |0⟩ ⟨1|. In this

way, 𝑋 acts on |0⟩ and |1⟩ as follows:

𝑋 |0⟩ = (|1⟩ ⟨0| + |0⟩ ⟨1|) |0⟩

𝑋 |1⟩ = (|1⟩ ⟨0| + |0⟩ ⟨1|) |1⟩

Which can be written:

𝑋 |0⟩ = |1⟩ ⟨0|0⟩ + |0⟩ ⟨1|0⟩

𝑋 |1⟩ = |1⟩ ⟨0|1⟩ + |0⟩ ⟨1|1⟩

This simplifies to:

𝑋 |0⟩ = |1⟩ ⟨0|0⟩ = |1⟩

𝑋 |1⟩ = |0⟩ ⟨1|1⟩ = |0⟩

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 29

𝑋 can also be written in matrix form as a 2 × 2 matrix in the basis |0⟩ and |1⟩. We

obtain:

𝑋 =
©«
0 1

1 0
ª®¬

Such that

𝑋 |0⟩ = ©«
0 1

1 0
ª®¬ ©«

1

0
ª®¬ = ©«

0

1
ª®¬ = |1⟩

and

𝑋 |0⟩ = ©«
0 1

1 0
ª®¬ ©«

0

1
ª®¬ = ©«

1

0
ª®¬ = |0⟩

.

It is important to note that scalars act commutatively and associatively on these

bras and kets.

Measurement

Measuring a qubit changes the state of a qubit. It forces the superposition to collapse

down into one state, either |0⟩ or |1⟩ for a measurement in the computational basis.

The state |𝑣⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ measured using {|0⟩ , |1⟩} returns |0⟩ with probability |𝛼 |2

and |1⟩ with probability |𝛽 |2.

This behaviour of collapse is crucial to quantum mechanics. If |𝑣⟩ is measured and

returns |0⟩, it becomes |0⟩. If measured again it will return |0⟩ every time with proba-

bility 1, even if 𝛼 was not equal to one. Any ‘memory’ of the previous superposition of

states is lost, making it impossible to know the exact state before measurement unless

the original state was itself |0⟩. In this case, 𝛼 = 1 and so 𝛽 = 0.

Measurement of a state is made with respect to a basis. In this way, the notion of

superposition of two states is basis dependent. For example, take the bases

𝐵1 = {|0⟩ , |1⟩}

𝐵2 = {𝛼 |0⟩ + 𝛽 |1⟩ , 𝛽 |0⟩ − 𝛼 |1⟩}

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 30

It can be confirmed that both of these bases are orthonormal and therefore valid bases

for a qubit. However, 𝛼 |0⟩ + 𝛽 |1⟩ is not a superposition of states with respect to 𝐵2 - it

is simply the first state in the basis.

When measuring |𝑣⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ using these two bases, it is clear to see that

when using 𝐵1, the measurement will return |0⟩ or |1⟩ probabilistically depending

on the values of 𝛼 and 𝛽 . However, when using 𝐵2, the outcome will always be

𝛼 |0⟩ + 𝛽 |1⟩. Throughout this paper, references to measurement should be taken as

using the computational basis {|0⟩ , |1⟩}.

The inherent ‘probability’ of returning |0⟩ or |1⟩ from |𝑣⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ is an axiom

of quantum mechanics [39]):

It is not derivable from other physical principles; rather, it is derived from

empirical observation of experiments with measuring devices.

In other words, it is not possible to simply ‘look’ at a qubit and exactly determine 𝛼

and 𝛽 . It is only possible to measure several qubits that are known to have the same

state |𝑣⟩ and from each measurement, roughly determine the values for 𝛼 and 𝛽 by

how often the state collapses into |0⟩ and |1⟩.

What is interesting to note is that though a qubit could take one of an infinite

number of states through the values of 𝛼 and 𝛽 , it is not possible to access this and

convert it into a huge amount of classical information; any measurement of the qubit

results in either |0⟩ or |1⟩, and since the state has now changed the original qubit

cannot be measured again:

A single measurement yields at most 1 bit of information [39].

Multi-Party States

One can consider systems with multiple quantum particles, known as multi-party

systems. The state space of a quantum system grows exponentially with the number

of particles. However its difference to classical computers lies in the way in which

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 31

quantum particles interact with one another, in a phenomenon known as entangling.

Before we define entanglement, we need to define how quantum states can be combined.

The tensor product ⊗ is used to combine two vector spaces. For example, the vector

space C2 ⊗ C2 is spanned by the tensor product of all combinations of |0⟩ and |1⟩:

|0⟩ ⊗ |0⟩ = |00⟩

|0⟩ ⊗ |1⟩ = |01⟩

|1⟩ ⊗ |0⟩ = |10⟩

|1⟩ ⊗ |1⟩ = |11⟩ .

Definition 3.2 (Entangled state). An entangled state consists of two or more qubits

that cannot be written as a tensor product of its constituent single qubit states.

For an example of an entangled state, take:

|Ψ1⟩ =
|00⟩ − |11⟩)

2

If |Ψ1⟩ is not entangled, then it can be written as a tensor product ⊗ of two single

qubit states, for example:

[𝑎0 |0⟩ + 𝑎1 |1⟩] ⊗ [𝑏0 |0⟩ + 𝑏1 |1⟩]

This is equal to

𝑎0𝑏0 |00⟩ + 𝑎0𝑏1 |01⟩ + 𝑎1𝑏0 |10⟩ + 𝑎1𝑏1 |11⟩

.

For this to equal |Ψ1⟩, it must be that since |01⟩ is not in |Ψ1⟩, then 𝑎0𝑏1 |01⟩ = 0,

i.e. that 𝑎0 = 0 or 𝑏1 = 0 or both. However, |00⟩ ≠ 0 in |Ψ1⟩, so 𝑎0 ≠ 0. Also, |11⟩ ≠ 0 in

|Ψ1⟩, so 𝑏1 ≠ 0. This is a contradiction and so |Ψ1⟩ cannot be written in product form,

meaning it is entangled.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 32

No Cloning Theorem

The no cloning theorem describes an important feature of quantum mechanics. It

states that for any unknown state |Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, it is not possible to copy or ‘clone’

this state onto another system.

Quantum Teleportation

It is possible to send unknown states elsewhere without copying or knowing them. Say

two parties - returning to Alice and Bob introduced in chapter 2 - share a maximally

entangled state (meaning the probability for any measurement is the same) and Alice

wants to teleport |Ψ⟩ to Bob, meaning Alice wants to transmit her particle to Bob

(losing it in the process). Alice can measure an operator on her state space. Depending

on her outcome, she knows what Bob’s state will become. She can then send a classical

message to Bob to perform an operator on his state to get |Ψ⟩ returned.

3.2 Quantum Computation

In order to introduce quantum computation, it is necessary to move the use of qubits

into a more computational environment. Consider a classical logic ‘gate’.

Definition 3.3 (Logic Gate). A classical logic gate is a device or function that computes

an elementary logic function. Examples include AND, OR, NAND. It takes from 2 to 8

inputs and often returns 1 or 2 (for example, see Table 3.1). The two logic states, true

and false, are represented by 1 and 0 in binary respectively [40].

Table 3.1: The NOT gate

Input Output
0 1
1 0

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 33

Definition 3.4 (Quantum Logic Gate). A quantum logic gate is a logic gate that acts

on a small number of qubits rather than classical bits. Not only can quantum gates act

on multi-party states, they can also take unentangled multi-party states to entangled

states.

Quantum logic gates are required to be reversible, since quantum mechanics uses

unitary transformations which are always invertible.

For example, the AND gate is not reversible and has no quantum analogue due to

the loss of information. Given the output 0, it is impossible to know with certainty

which of the inputs was provided, see Table 3.2.

Table 3.2: The AND gate

Input Output
00 0
01 0
10 0
11 1

Quantum gates are found in the form of operators or transformations, meaning

they can often be viewed as matrices. For example, take a single-qubit gate and the

quantum operation 𝑌 , applied to the qubits |0⟩ and |1⟩. Let 𝑌 = 𝑖 |1⟩ ⟨0| − 𝑖 |0⟩ ⟨1|. Then

we have the quantum gate, see Table 3.3

Table 3.3: The Y gate

Input Equation Output
|0⟩ [𝑖 |1⟩ ⟨0| − 𝑖 |0⟩ ⟨1|] |0⟩ 𝑖 |1⟩
|1⟩ [𝑖 |1⟩ ⟨0| − 𝑖 |0⟩ ⟨1|] |1⟩ −𝑖 |0⟩

Useful Gates

We describe some gates that are referred to later in the text or have some notable

properties.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 34

Pauli Gates

The following three gates are mentioned in various relevant papers, either to help in

computing the CSIDH group action or to help in solving the Dihedral Hidden Subgroup

Problem (DHSP) using error correction, see Section 3.3.

The Pauli Gates are a group of gates that act on one qubit. They are the gates 𝐼 , 𝑋 ,

𝑌 and 𝑍 . 𝐼 is simply the identity matrix, and 𝑋 , 𝑌 and 𝑍 are defined as

𝑋 =
©«
0 1

1 0
ª®¬𝑌 =

©«
0 −𝑖

𝑖 0
ª®¬ and 𝑍 =

©«
1 0

0 −1
ª®¬ .

These matrices form a basis for the vector space of Hermitian matrices with real co-

efficients; these matrices can be used in a linear combination to form all 2-D observables

in quantum mechanics.

Clifford Gates

Clifford gates are types of gates that obey a certain property - they take Pauli operators

to other Pauli operators. Together, these elements form a group called the Clifford

group which is useful in quantum error correction.

The quantum Toffoli Gate

The quantum Toffoli gate, or the CCNOT gate is a reversible logic gate that acts upon

three qubits as follows:

Take three qubits, |𝑥𝑦𝑧⟩ = |𝑥⟩ |𝑦⟩ |𝑧⟩. We have that:

𝑇𝑂𝐹 |𝑥⟩ |𝑦⟩ |𝑧⟩ = |𝑥⟩ |𝑦⟩ |𝑧 ⊕ (𝑥 ∧ 𝑦)⟩

Interestingly, the Toffoli gate is invertible despite using the classical AND operation

on qubits (∧).

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 35

Table 3.4: The Toffoli gate

Input Output
|000⟩ |00⟩
|001⟩ |001⟩
|010⟩ |010⟩
|011⟩ |011⟩
|100⟩ |100⟩
|101⟩ |101⟩
|110⟩ |111⟩
|111⟩ |110⟩

T-gates

The T-gate, or 𝜋8 gate is another interesting gate that is instrumental in a lot of metrics

used in quantum error correction. The T-gate has the matrix form:

𝑇 =
©«
1 0

0 𝑒𝑖𝜋/4
ª®¬ .

The T-gate is not a member of the Clifford group, but when put in a set with two

elements of the Clifford group, 𝐻 and 𝐶𝑁𝑂𝑇 , and the S-gate

𝑆 =
©«
1 0

0 𝑒𝑖𝜋/2
ª®¬ .

it forms a universal set.

Definition 3.5 (Universal Set). A universal set is a set of operators that can ap-

proximate any unitary matrix to an arbitrary accuracy 𝜖>0 with a finite sequence of

operators.

The T-gate is very useful in quantum computing. However, as it is not a Clifford

group operator it is more difficult to represent on a quantum computer and so ‘costs’

more to create in both time and space. For this reason, the number of T-gates in any

quantum circuit can be taken as the leading term for the complexity of that circuit.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 36

Two useful metrics are born: T-count, which returns the total number of T-gates in

the circuit; and T-depth, which returns the number of T-gates used in sequence for a

circuit or algorithm.

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is useful in a number of applications, especially

in solving the Dihedral Hidden Subgroup Problem in subexponential time which we

will see in chapter 4.

The QFT transform looks like this for a state space with 𝑁 = 2𝑛 basis states:

𝐹2𝑛 := |𝑠⟩ → 1
√
2𝑛

∑︁
𝑘∈Z2𝑛

𝑒
𝜋𝑖𝑘𝑠

2𝑛−1 |𝑘⟩

Circuits

We use quantum circuits as a convenient way to describe a quantum algorithm.

In quantum computers, a quantum state can be initialised to |𝐴⟩ for a bitstring (a

string of bits) 𝐴 input into a circuit and then output as a bitstring in order to give

information that is useful to a classical computer.

A circuit can look something like:

Figure 3.1: A decomposed Toffoli gate [41].

Where the horizontal lines are individual qubits which make up a multiqubit state,

and various symbols represent different quantum logic gates operating on each qubit.

The horizontal axis represents time, going from left to right. When a circuit finishes, a

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 37

measurement in the computational basis gives the output as a bitstring. Most gates are

squares with a letter marking the name of the gate. The CNOT gate however has the

symbol:

Figure 3.2: A CNOT gate [41].

3.3 Error-Correction and Surface Code

Classical and quantum computers are both subject to noise. Noise describes anything

that could cause interference in a computer, usually in the form of uncontrolled electro-

magnetic energy. In classical computers, this noise is often of no consequence except

for sensitive machinery like telescopes. However, in quantum computers noise can

pose a much larger problem, as qubits are sensitive and can be degraded by many

electromagnetic sources - from Wi-Fi to the earth’s magnetic field.

Amultiqubit system can go through decoherence [42], where the qubits are degraded

and produce erroneous output in an algorithm. They are also prone to dephasing -

collapsing into one of the computational basis states. This is an important problem

for running quantum algorithms, as qubits can become useless extremely quickly. In

order to protect against noise, quantum computers require error-correction to mitigate

the effect of noise on a system.

Since errors are so rare on classical computers, error correction tends not to be of

as much importance. Classical error correction can involve copying a bit several times

and simply taking the majority of outcomes - majority rule [43]. However, this is not

possible in quantum error correction; the no-cloning theorem means that states cannot

be copied. Instead, the state is often taken to several higher dimensional entangled

states, known as adding ancilla qubits.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 38

Figure 3.3: an exemplary circuit [44].

We can think of an error correcting code as a three step process:

(1) Introduce a unitary encoding operation 𝐸 to our qubit |Φ⟩.

(2) An unknown operator 𝑁 acts as a set of correctable ‘noise’ operations on the

particle, randomly altering qubits in an unpredictable way.

(3) We use a unitary decoding operator 𝐷 to return our corrected code.

The intention is that after a qubit is encoded, undergoes noise and is decoded, that

𝐸 and 𝐷 act in such a way that the input to this circuit is the same as or close to the

output.

Figure 3.4: Example of ancilla qubits: the Shor code circuit [45].

A successful method of quantum error correction involves taking many physical

qubits into logical qubits (groups of several qubits that are treated as one qubit) in

order to stabilise the circuit against noise.

There are two possible types of quantum error correction; passive and active. Passive

error correction occurs only within operations of quantum computers, whereas active

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 39

error correction produces a result from a quantum measurement and relies upon a

classical computer to decide what to do next.

The Surface Code

Some of the largest areas of interest in quantum error correction are those which allow

for constrained qubit movement in real situations, like superconducting qubits. An

example of this is the surface code. The surface codes works by splitting errors into

different categories: a bit flip, phase flip or a combination of the two.

The surface code is, essentially, a 2-dimensional lattice of qubits that works as an

error-correcting code [46] [47]. In the surface code, it takes a minimum of thirteen

physical qubits to implement a single logical qubit, a notion of a qubit composed of

several physical qubits that is used to better execute a purpose. A logical qubit that is

usably resistant to errors is more likely to need 1000 or more physical qubits [46].

The 2-D limitation of the surface codes means that computations that are trivial in

one circuit can take many more steps in a sequence of 2-D local operations, as shown

above with the number of physical qubits that would make up one decent logical qubit.

However, the structure of the surface code makes them very scaleable and tolerant to

local errors, much more so than other methods like Bacon-Shor codes [46].

Visualise a 2-dimensional grid as in Figure 3.5. Half are data qubits used for storing

the information we want to protect against errors and half are measurement qubits

used to check for errors; in Figure 3.5, open circles represent data qubits whereas

closed ones represent measurement qubits. The qubits are then grouped into sections

of four neighboring qubits - nearest neighbours in the lattice. The measurement of the

‘measurement qubits’ are those used to stabilise and manipulate the data qubits. The

surface codes helps build these into logical qubits with increased fault tolerance.

These neighbouring qubits must be able to undergo initialization, single-qubit

rotations, CNOT and SWAP operations between neighbours.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 40

Figure 3.5: An example of a typical surface code, [46].

Each group of nearest neighbour qubits is associated with stabiliser measurement

qubits, either a Z-stabiliser or an X stabiliser. These stabiliser measurement qubits are

qubits that ‘stabilise’ the code; they detect and actively correct errors if necessary

A measure-Z qubit measures a 𝑍 -stabiliser, since it forces its nearby data qubits

into 𝑍 -eigenstates - similarly, a measure-X qubit measuring an 𝑋 -stabiliser. Each data

qubit is coupled with 2 measure-𝑋 and 2 measure-𝑍 qubits, and each measurement

qubit is coupled with 4 data qubits.

Errors in the surface code scheme can be modelled by introducing random𝑋 bit flip

and 𝑍 phase flip operators in qubit states. A bit flip is modelled using the 𝑋 operator

as the 𝑋 operator swaps the computational basis over:

𝑋 =
©«
0 1

1 0
ª®¬ .

Likewise a phase flip is modelled with a 𝑍 operator as it changes the phase (sign) of

elements in the computational basis:

𝑍 =
©«
1 0

0 −1
ª®¬ .

Just these two operators can describe quite a wide range of single-qubit errors.

Since clearly a𝑍 phase flip. can be undone by applying𝑍 once more (and similarly with

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 41

𝑋), it appears that errors can be undone by quantum correction gates. If an erroneous

bit flip is detected, it can be combatted by applying 𝑋 or 𝑍 depending on the type.

However, doing so without surety that the operator will not make a mistake might

introduce more errors in the surface code. Instead, the error location is passed to a

classical computer that simply remembers to flip the sign of the result for all subsequent

computations. If a phase flip is measured, the classical computer will change the sign

of every measurement of that data qubit’s two adjacent measure-𝑋 qubits. Likewise

if a bit flip is measured, subsequent measurements of the data qubit’s two adjacent

measure-𝑍 qubits will be altered.

Something interesting to note is that for the surface code, not all errors detected

need to be corrected. Active correction with a classical system only occurs when an

error would affect measurement outcomes.

A 𝑍 error that is detected immediately can be corrected by changing the sign of

any subsequent 𝑋 measurements, whereas an 𝑋 error will have no effect on the same

𝑋 measurement but would have an effect on a later 𝑍 measurement. Thus if errors

are located quickly, active error correction can occur using a classical system. For

this reason, a lot of interest in the surface code is in error detection rather than error

correction.

The difficulty in detecting errors lies in the measurement-collapse feature of quan-

tum mechanics. When detecting errors, it is necessary to measure both 𝑋 and 𝑍 on the

qubit. Measuring any state in a sequence of these would destroy the state. Measuring

a state that is not already in a 𝑍 -eigenstate with 𝑍 would return 1 or -1 and lose all

previous information about the state; following it with an 𝑋 measurement would then

randomly return 1 or -1.

However, this issue can be avoided by measuring more than one qubit at a time,

introducing the possibility of non-destructive error correction.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 42

Figure 3.6: The cycle for a measure-𝑍 and measure-𝑋 qubit stabilisation respectively,
also known as Stabiliser Codes [46].

How To Detect Errors

Take a measure-𝑍 qubit as in Figure 3.6. It can be used to force its neighbouring data

qubits 𝑎,𝑏,𝑐 ,𝑑 into eigenstates of 𝑍 , making all of them together into an eigenstate of

the operator product 𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 . Likewise, 𝑋 forces its neighbouring data qubits into

an eigenstate of the operator product 𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑 .

In order to find an error it is important to note that stabiliser codes operate not

based on the ground state (e.g. all qubits are equal |0⟩) to detect errors, but the state

that results from measuring all the stabilisers at the same time. These are known as

quiescent states and there are many possibilities for which forms these can take.

These are often chosen by one iteration of the cycle in Figure 3.6 with all qubits in

their ground state. Once chosen, this quiescent state is not disturbed by the cycles of

𝑍 and 𝑋 stabilisers unless an error occurs. For example, if we obtain a quiescent state

|𝜓 ⟩, then it becomes an eigenvector of each stabiliser with eigenvalue 1:

𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑 |𝜓 ⟩ = ± |𝜓 ⟩

𝑍𝑒𝑍 𝑓𝑍𝑔𝑍ℎ |𝜓 ⟩ = ± |𝜓 ⟩

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 43

Consider a single qubit phase error on the data qubit 𝑎. We would represent this

with the operator 𝐼𝑎+𝜖𝑍𝑎 , where 𝜖 is a number less than one representing the probability

for a 𝑍 -phase flip:

𝐼𝑎 + 𝜖𝑍𝑎 = (1 + 𝜖) |0⟩ ⟨0| + (1 − 𝜖) |1⟩ ⟨1| .

This would cause the wavefunction of the 4 qubits to become

|𝜓 ⟩ → |𝜓 ′⟩ = (𝐼𝑎 + 𝜖𝑍𝑎) |𝜓 ⟩

What happens when we pass this through the cycle in Figure 3.6? There are two

possibilities; either the error gets corrected automatically, or the error remains and is

discoverable. |𝜓 ′⟩ is projected to an eigenstate of all 𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 and 𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑 operator

products.

In one case, the 𝐼𝑎 term leads (is measured) and |𝜓 ′⟩ returns to |𝜓 ⟩ with probability

1− |𝜖 |2 at the end of the cycle in Figure 3.6. The error has been automatically corrected

by the system.

In another case, the 𝜖𝑍𝑎 term leads and we get the result 𝑍𝑎 |𝜓 ⟩ with probability

|𝜖 |2. This result is easily discoverable in the next cycle of stabilisers thanks to the fact

that the erroneous data qubit is measured by both measure-𝑍 and measure-𝑋 qubits.

Figure 3.7: Zooming in on data qubit 𝑎 [46], edited for this paper.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 44

In Figure 3.7 the signs of the 2 measure-𝑋 qubits next to our data qubit 𝑎 will flip.

When commuting, 𝑋 and 𝑍 operators result in a negative sign. Thus for the right hand

measure-𝑋 qubits in Figure 3.7 coupled with our erroneous qubit 𝑎 (with the stabiliser

of the value 𝑋𝑎𝑋𝑏𝑋 𝑓𝑋𝑔) we have that:

𝑋𝑎𝑋𝑏𝑋 𝑓𝑋𝑔 (𝑍𝑎 |𝜓 ⟩) = −𝑍𝑎 (𝑋𝑎𝑋𝑏𝑋 𝑓𝑋𝑔 |𝜓 ⟩

𝑋𝑎𝑋𝑏𝑋 𝑓𝑋𝑔 (𝑍𝑎 |𝜓 ⟩) = −(𝑋𝑎𝑏𝑓 𝑔)𝑍𝑎 |𝜓 ⟩
(3.1)

Where𝑋𝑎𝑏𝑓 𝑔 would be the returned operators from measuring the measure-𝑋 qubit.

The sign flip means that 𝑍𝑎 |𝜓 ⟩ is an eigenstate of the 𝑋 -stabiliser, but has a flipped

eigenvalue than |𝜓 ⟩.

This flipped sign is detectable as it causes sign changes in the two measurement

qubits near the data qubit 𝑎. Likewise, a bit flip will change the sign of the measure-𝑍

outcomes adjacent to the qubit 𝑎. If the error is both a bit and phase flip (also known

as a 𝑌 error since 𝑌 = 𝑋𝑍), then all 4 measurement qubits surrounding the erroneous

bit will give a different result. The locations of these sign changes in measurement

outcomes of the measurement qubits will reveal the location of the error. The error

can be corrected using classical computer software to flip the sign of all subsequent

measurements.

The Surface Code For Computation

Although it may appear that the use of the surface code makes any change to a circuit

impossible, logical operators can be built on the surface code by utilising an incomplete

set of stabilisers, which in turn can be used to create logical qubits.

Note Figure 3.8; the left and right incomplete 𝑋 -stabilisers are called 𝑋 boundaries

or smooth boundaries, and the incomplete 𝑍 -stabilisers at the top and bottom of the

array are called 𝑍 boundaries or rough boundaries.

An incomplete set of stabilisers increases the degrees of freedom of an array - there

are more two degrees of freedom of qubits now than there are degrees of constraint.

These two degrees of freedom could be used to define the array as a logical qubit.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 45

Figure 3.8: Note the incomplete stabilisers at the edges of the array [46].

It is important to note that when defining a logical operator on the array that

manipulates these degrees of freedom, it cannot affect the complete stabilisers as that

would negate the effects of error-correction.

We can move around this by making operations on pairs of qubits at the same time.

While we know from error correction that one bit flip on a data qubit will show errors

in 2 measure-𝑍 qubits around it, we can instead consider the effect of two 𝑋 operations

(bit flips) on data qubits that neighbour one measure-𝑍 qubit. Take the measure-𝑍

qubit from Figure 3.7 surrounded by the data qubits 𝑎, 𝑏, 𝑐 and 𝑑 .

𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 (𝑋𝑎𝑋𝑏 |𝜓 ⟩) = (−1)𝑋𝑎𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 (𝑋𝑏 |𝜓 ⟩)

= (−1)2𝑋𝑎𝑋𝑏𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 |𝜓 ⟩

= 𝑍𝑎𝑏𝑐𝑑𝑋𝑎𝑋𝑏 |𝜓 ⟩

(3.2)

We can see that 𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 commutes with a pair 𝑋𝑎𝑋𝑏 . This would make the bit

flips invisible to that specific measure-𝑍 qubit, but not others due to the qubit positions.

Now consider a bit flip on the left side of the array in Figure 3.9, on the data qubit

marked in red. In order for that not to be detected by its neighbouring measure-𝑍

qubit, we must also perform a bit flip on the blue data qubit on the diagram. However,

now the data qubit on the other side of other measure-𝑍 qubit needs to be changed,

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 46

Figure 3.9: surface code with highlighted qubits. Image from [46], edited for this paper.

and so on and so on until we reach the boundary on the right side of the array, creating

the line as in Figure 3.10.

Figure 3.10: A line of qubits crossing the surface code. Image from [46], edited for this
paper.

We could write this series of bit flips as a logical X operator, 𝑋𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6.

Now if 𝑋𝐿 is applied to the quiescent state |𝜓 ⟩, while the measurement outcomes of

𝑋𝐿 |𝜓 ⟩ will be the same since no stabilisers are affected, the state itself is not equal to

|𝜓 ⟩.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 47

We could similarly create a chain of phase flips going from the top to bottom

boundaries to be our 𝑍𝐿 logical qubit.

However, creating only one qubit no matter the size of the array is cumbersome.

Instead, holes or defects are introduced as in Figure 3.11 - spaces where a measure-𝑍

or measure-𝑋 qubit is ‘turned off’ and does not perform its cycle in Figure 3.6. Doing

so allows us to once more utilise new degrees of freedom around this new boundary

and create logical qubits in a much smaller space.

Figure 3.11: Surface code with introduced holes. From [46], edited for this paper.

We can use these and terms called braids to define a logical universal set and allow

us to create whatever gates we like.

Magic States

In order for quantum computers to be at all useful, it is necessary that they make

efficient use of magic states. Magic states are states outside of Clifford states that, when

combined with Clifford states, give a universal set of operators.

A common universal set is effectively Clifford+T, the set of Clifford operators plus

the 𝑇 gate, where the Clifford operators are fairly easy and the 𝑇 gate more difficult.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 48

This set usually consists of the Hadamard gate 𝐻 ,𝑆 gate, controlled-NOT CNOT gate,

and the 𝑇 gate, but it is easier to write these out as products of 𝑋 and 𝑍 instead.

Clifford operations are relatively easy to implement in fault tolerant systems.

However, non-Clifford operations are much more difficult. A magic state needs to

be created in order to be used with Clifford operations to create a universal set [46].

However, this gets harder as the states get noisier and introduce errors. Magic state

distillation can be used to move from several noisy states to a few purer, more fault-

tolerant states [48]. This is very useful in error correction and makes up a large part of

the surface code [49].

The difficulty in creating a fault-tolerant 𝑇 gate (or any non-Clifford gate) is what

makes surface code take up so much space; fault-tolerant Clifford gates are created

in much less space and time than 𝑇 gates. In this way, often when talking about

the surface code, Clifford gates are treated as free and only the number of 𝑇 gates is

counted. Magic state distillation is wholly concerned with the goal of creating these

states, and the speed of a quantum computer is led by a combination of how fast magic

states can be distilled, and how fast they can be used by the computer.

In most surface code systems, the majority of the error-corrected code is split into

one section for distilling the magic states and one section of qubits, the data block, that

consumes the magic states and does the intended computation [48]. The method of

parallelising these two sections to run as quickly as possible depends entirely on the

algorithm being carried out.

Complexity

The error correction properties of the surface code can vary depending on the error

generation rate and the types of time and space-saving features used in the surface

code.

The surface codes takes up much more space than systems without this error

correction, due to the space overhead involved in using logical instead of physical

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 49

qubits. Time overheads increase significantly due to the limited number of accessible

logical operations. Therefore, much importance is placed upon schemes which move

quantum systems into the surface code with a low space-time overhead. In fact,

optimising the surface code model using the method of lattice surgery is NP-hard [50].

Some such schemes are defect based, twist based and patch based. Patch based

schemes not only can be created with little surface code knowledge, they also are very

simple topologically.

In order to discuss the complexity of the surface code overheads, it is necessary

to discuss the design of these two blocks of magic state distillation and data block for

consumption. Time-space tradeoffs of these two blocks include increasing the number

of distillation blocks or implementing gates simultaneously [50].

Data blocks store the data qubits of the computation and consume magic states.

We can measure the cost of using these in terms of space as tiles and time as time steps.

If we want to save space, compact blocks use 1.5𝑛 + 3 tiles for 𝑛 qubits and require

up to 9 time steps to consume a magic state. If we want to save time, fast blocks use

2𝑛 +
√
8𝑛 + 1 tiles for 𝑛 qubits and take only one time step per magic state [50].

However, we must also consider the cost of running magic state distillation. Daniel

Litinski’s 2019 paper, Magic State Distillation: Not as Costly as You Think, [50] states

that:

The class of magic state distillation protocols that are based on an 𝑛-qubit

error-correcting code with𝑚𝑥 𝑋 -stabilisers and 𝑘 logical qubits can be

implemented using 1.5(𝑚𝑥 + 𝑘) + 4 tiles and 𝑛 −𝑚𝑥 time steps. Such

protocols output 𝑘 magic states.

One data block and one distillation block in reality would have 𝑇 gates created

and consumed one by one by the distillation and data blocks respectively. In order to

speed this up, we could consider increasing the number of distillation blocks, which

would in essence decrease the time taken to distill one magic state and create a T-gate.

Alternatively, we can consider the utilisation of a feature of T-gates: layers of T-gates

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 50

can be arranged in such a way that gates can be executed simultaneously - down to one

T-layer per unit time of qubit measurement. For a surface code of distance-𝑑 qubits, Joe

O’Gorman and Earl T. Campbell’s 2017 paper on Quantum Computation With Realistic

Magic State Factories [48] states that:

This results in a space-time cost for the T-gate that is only a constant

multiple of a surface code overhead, namely a O(𝑑2) spatial cost and a O(𝑑)

temporal cost . . . the space-time cost of a T-gate realized in a distance-𝑑

surface code is𝐶𝑇 (𝑑3) with𝐶𝑇 ≈ 160− 310 when employing Bravyi-Haah

codes.

Since Clifford gates are relatively ‘cheap’ compared to T-gates, they have been

omitted. Since the Clifford+T gate set is universal, every circuit an be written as a

combination of Clifford and T-gates. Counting the T-gates will allow us to find the

overall complexity of the algorithm on surface code

It is also important to note that each gate will be comprised of logical qubits, not

physical qubits. Campbell’s paper [48] states that in surface code, one logical qubit

would take 𝑑2 physical qubits to create, not accounting for the extras needed to check

parity for code distance 𝑑 - the number of physical qubits spanning the length of the

surface code.

An Evaluation of the Surface Code

As mentioned earlier, the 2D array of the surface code means that a large number of

qubits are needed to make up one logical qubit - think thousands of qubits [46] when

quantum computers have only reached tens of qubits in size. These qubits can be

known as overhead qubits as they create a significant problem in the overhead for space.

Another paper suggests that planar codes, a variant on the origins of the surface code,

need fewer qubits for the same security as the surface code, but can only encode one

qubit of information [51]. Additionally, experimental errors can occur at too frequent

a rate for the surface code to be useful as a method of error correction.

CHAPTER 3. BACKGROUND: AN INTRODUCTION TO QUANTUM COMPUTING 51

Figure 3.12: An example of an error (𝑎) with two possible causes (𝑏) and (𝑐) from [46].

If errors occur frequently enough, one error result might have more than one

possible cause, see Figure 3.12. If the wrong conclusions are made about which qubit

cause the error, this will result in errors at the overall computation and render the

entire computer useless. This expensive fault tolerance reduces how useful the surface

code is for current quantum computers [52].

Some alternatives to the surface code have been suggested and are in development.

One such is subsystem codes [52], where a new family called subsystem hyperbolic

codes:

...used 4.3 times fewer physical qubits than the surface code and 5.1 times

fewer qubits than current optimal subsystem codes to achieve the same

physical error rate.

This subject area is only due to grow in the coming years along with quantum

computers; achieving more and more qubits in one quantum computer will be useless

without a robust fault-tolerant method of computation.

52

Chapter 4

Mathematical Basics of Security of

CSIDH

The security of CSIDH relies on the difficult of finding an isogeny. This directly

reduces to the Dihedral Hidden Subgroup Problem (DHSP). There are several quantum

algorithms for solving variations on this problem [53, 54]. In this section we create

our own, slightly modifying the algorithm used in Childs, Jao and Soukharev’s 2014

paper [53] for use with CSIDH.

4.1 Kuperberg’s Algorithm and Alternatives

Kuperberg’s algorithm [54]gives a subexponential time quantum algorithm for the

DHSP. The DHSP is as follows:

Definition 4.1 (Dihedral Hidden Subgroup Problem (DHSP)). Take𝐺 , the dihedral

group 𝐷𝑁 . We write 𝐷𝑁 as

𝐷𝑁 = ⟨𝑥,𝑦 |𝑥𝑁 = 𝑦2 = 1, 𝑦𝑥𝑦 = 1⟩

. 𝐻 is a subgroup of 𝐷𝑁 generated by a reflection 𝑦𝑥𝑠 , where 𝑠 is an integer in the

range {1, 𝑁 − 1}. The problem is: for a given set 𝑆 and an oracle 𝑓 : 𝐺 → 𝑆 ,where

CHAPTER 4. MATHEMATICAL BASICS OF SECURITY OF CSIDH 53

𝑓 (𝑎) = 𝑓 (𝑏) if and only if 𝑎 and 𝑏 are in the same right coset of 𝐻 , find a generating

set of 𝐻 .

This subgroup 𝐻 does exist by promise, but the difficulty is in defining it. When 𝐻

is generated by a rotation, the hidden subgroup is easier to find; it is either 1 or has a

non-trivial intersection with𝐶𝑁 = ⟨𝑥⟩. In this case, finding 𝐽 = 𝐻 ∩𝐶𝑁 is easy if given

the factors of 𝑁 , which can be found in subexponential time with Shor’s algorithm [1].

If 𝐻 is generated by a reflection, then 𝐻/𝐽 is a reflection in the quotient group 𝐺/𝐽 .

Thus the problem reduces as follows:

Proposition 4.2 (Hidden slope for the DHSP). The Dihedral Hidden Subgroup

Problem of finding 𝐻 in 𝐷𝑁 reduces to finding the slope of a hidden reflection in 𝐷𝑁 . [54]

Since 𝐻 = ⟨𝑦𝑥𝑠⟩, this further simplifies to finding the unknown 𝑠 . Kuperberg uses

this fact to create a subexponential time algorithm to find𝐻 . Kuperberg’s more general

algorithm from his original paper [54] is seen modified in Algorithm 8.

This method requires only𝑂 (8
√︁
log2 𝑁) queries and can be conducted in quasilinear

time - close to linear time.

Alternatively, Kuperberg states [54] that a conversation with Peter Hoyer in 2003

revealed an alternative method, where it is possible to recover 𝑠 directly by a Quantum

Fourier Transform [53]. The measured Fourier number 𝑡 of these qubits reveals 𝑠 by

the relation:
𝑡

2𝑘
∼ 𝑠

𝑁

meaning that about 𝑂 (log 𝑁) computation time is saved.

Other Methods of Solving the Hidden Shift Problem

Bonnetain and Schrottenloher’s 2018 paper [8] summarises two alternative methods to

find hidden shifts that build upon the more general method presented. Rather than

comparing pairs of qubits, one method combines 𝑘 qubits in a tensor product, applying

and measuring an ancilla register and projecting the result to a pair of qubits that are

CHAPTER 4. MATHEMATICAL BASICS OF SECURITY OF CSIDH 54

Algorithm 8 Kuperberg’s algorithm (edited)
Require: 𝑓 : 𝐷𝑁 → 𝑆 with a hidden subgroup 𝐻 that is generated by a reflection (i.e.

𝐻 = ⟨𝑦𝑥𝑠⟩)
Ensure: H
1: Make a list 𝐿0 of copies of the state 𝜌𝐷𝑁 /𝐻 :

𝜌𝐷𝑁 /𝐻 =
1

|𝐷𝑁 |
∑︁
𝑎

|𝐻𝑎⟩ ⟨𝐻𝑎 |

which forms a mixture of right cosets.
2: Extract a qubit state |𝜙𝑘⟩ from each 𝜌𝐷𝑁 /𝐻 using a Quantum Fourier Transform on
Z𝑁 and a measurement.

3: For each 0 ≤ 𝑗 ≤ ⌈
√︁
(𝑙𝑜𝑔2𝑁) − 2⌉, we assume a list 𝐿 𝑗 of qubit states |𝜙𝑘⟩ such

that 0 ≤ 𝑘 ≤ 2𝑚2−𝑚(𝑗+1)+1.
4: Randomly divide 𝐿 𝑗 into pairs of qubits |𝜙𝑘⟩ and |𝜙𝑙⟩ such that

|𝑘 − 𝑙 | ≤ 2𝑚
2−𝑚(𝑗+1)+1

5: Define 𝐿 𝑗+1 as consisting of those qubit states of the form
��𝜙 |𝑘−𝑙 |〉.

6: The final list 𝐿𝑚 consists of states |𝜙0⟩ and |𝜙1⟩. Perform a special measurement
(Ettinger-Hoyer) with different values to learn 𝑠 ∈ Z𝑁 to within 𝑁 /4.

7: Write 𝑁 = 2𝑎𝑀 where𝑀 is odd. Then we have that:

𝐶𝑁 � 𝐶2𝑎 ×𝐶𝑀

8: For each 1 ≤ 𝑗 ≤ ⌈
√︁
log2 𝑁 − 2⌉, we can apply an algorithm for groups of size 2𝑁

to obtain many |𝜙𝑘⟩ with 2𝑚𝑖𝑛(𝑎,𝑗) |𝑘 , splitting down the 𝐶2𝑎 group.
9: For the 𝐶𝑀 group, repeat steps 1-7 after applying the group automorphism 𝑥 →
𝑥2− 𝑗 to the 𝐶𝑀 group. This produces copies of |𝜙2𝑗 ⟩.

10: All these observations together can be used to determine the value of 𝑠 and hence
determine 𝐻 = ⟨𝑦𝑥𝑠⟩.

CHAPTER 4. MATHEMATICAL BASICS OF SECURITY OF CSIDH 55

then mapped to |0⟩ or |1⟩. This returns 2𝑘 possible sums, which are combined to obtain

enough ‘labels’ to use in the Quantum Fourier Transform to find 𝑠 .

Overall, the total number of queries here is 8 log2(𝑁)2. This method limits the

number of quantum queries to be polynomial in 𝑁 , and so a classical time and memory

cost of 𝑂 (20.291𝑙𝑜𝑔2 (𝑁)) is obtained. According to [8], CSIDH-512 with 𝑁 = 2256 can

have its hidden shift s found in 219 quantum queries and 286 bits of classical time and

memory when taking into account the probability that the Quantum Fourier Transform

is successful (it fails about 1 − 4
𝜋2

of the time).

4.2 Applying the Hidden Subgroup Problem to

CSIDH

The 2018 paper by Childs, Jao and Soukharev [53] entitled Constructing elliptic curve

isogenies in quantum subexponential time applies Kuperberg’s algorithm for the hidden

shift problem to construct isogenies between two elliptic curves. This application

implies that there is a subexponential-time algorithm for ‘breaking’ CSIDH. The algo-

rithm used in the paper is made up of two parts: the first is solving the hidden shift

problem, and the second is computing a "superposition of all isogenies originating

from a given curve, which the algorithm calls as a black box" [8].

Though the paper focuses on ordinary elliptic curves, this can be applied to su-

persingular elliptic curve, with the only change in calculations being that the trace of

Frobenius does not need to be calculated.

4.3 Construction of a Reduction to CSIDH

We create a slightly modified version of the DHSP algorithm for CSIDH and show that

CSIDH can indeed be broken in quantum subexponential time.

CHAPTER 4. MATHEMATICAL BASICS OF SECURITY OF CSIDH 56

First, the problem for an attacker with CSIDH is to find the common secret curve

that Alice and Bob share:

[𝔄] [𝔅]𝐸0

Recall that Alice and Bob have publicly agreed upon a curve 𝐸0 together and then

each generated their own secret isogenies, [𝔄] and [𝔅] respectively. They each then

generate a new curve they share with one another publicly: Alice shares 𝐸𝐴 = [𝔄]𝐸0
and Bob shares 𝐸𝐵 = [𝔅]𝐸0. They then apply their secret isogeny to their partner’s

curve to obtain the shared curve [𝔄] [𝔅]𝐸0.

The attacker has knowledge of Alice’s curve 𝐸𝐴, Bob’s curve 𝐸𝐵 and the curve 𝐸0.

One way for an attacker to find [𝔄] [𝔅]𝐸0 is to find an isogeny between 𝐸0 and 𝐸𝐴,

that is, find [𝔄]. Then they could also find [𝔅] by finding the isogeny between 𝐸0 and

𝐸𝐵 . In this way, with knowledge of [𝔄], [𝔅] and 𝐸0, the attacker can construct the

common secret curve [𝔄] [𝔅]𝐸0.

However, something to note is that since 𝐸𝐴 and 𝐸𝐵 are shared publicly, the attacker

in fact only needs to compute one isogeny. If the attacker takes 𝐸𝐵 = [𝔅]𝐸0 and knows

𝐸𝐴 and 𝐸0, they only need to find one isogeny [𝔄] to compose with [𝔅]𝐸0 to get

[𝔄] [𝔅]𝐸0

as required.

In order to find an isogeny, we use the modified Childs-Jao-Soukharev Algorithm 3

[53], seen here as Algorithm 9 .

If we use the isogeny [𝔄] produced by Algorithm 9 with 𝐸𝐵 , we get 𝐸𝑆 = [𝔄] [𝔅]𝐸0.

The reason this works is through the use of further algorithms listed in the paper by

Childs, Jao and Soukharev [53]. Step 2 uses an algorithm by Cheung and Mosca [55] to

decompose finite abelian groups. Step 3 uses the fact that 𝐶 (O) has been decomposed

into a direct sum of cyclic groups to solve the hidden shift problem (equivalent to the

Dihedral Hidden Subgroup Problem) for each. This uses two subexponential algorithms

in [53], to find 𝐸𝐴 such that 𝐸𝐴 = [𝔄]𝐸0, which in turn uses an algorithm computing a

relation vector for a factor base.

CHAPTER 4. MATHEMATICAL BASICS OF SECURITY OF CSIDH 57

Algorithm 9 Finding an isogeny
Require: A finite field F𝑝 , and endomorphism ring O = Z[𝜋], created from F𝑝 , and

the isogenous supersingular elliptic curves 𝐸0 and 𝐸𝐴 and the set E.
Ensure: [𝔄] such that 𝐸𝐴 = [𝔄]𝐸0
1: Check that 𝐸0, 𝐸𝐴 are indeed supersingular.
2: Find Cl(O) and decompose Cl(O)= ⟨[𝔄1]⟩ ⊕ · · · ⊕ ⟨[𝔄𝑘]⟩ where |⟨[𝔄𝑘]⟩| = 𝑛 𝑗
3: Solve the hidden shift problem defined by functions 𝑓0, 𝑓1 : Z𝑛1 × · · · × Z𝑛𝑘 → {𝐸},

satisfying that 𝑓𝑖 (𝑥1, ..., 𝑥𝑘) = ([𝔄𝑘]𝑥1 · · · [𝔄𝑘]𝑥𝑘)𝐸𝑖 for 𝑖 ∈ {0, 1}. This will return
some (𝑠1, ..., 𝑠𝑘) ∈ Z𝑛1 × · · · × Z𝑛𝑘 .

4: output [𝔄] = [𝔄1]𝑥1 · · · [𝔄𝑘]𝑥𝑘

Assuming the Generalised Riemann Hypothesis, the algorithm runs in time

𝐿𝑞 (12 ,
√
3
2) (see Appendix A), using the fact that Kuperberg’s algorithm runs with time

complexity 2𝑂 (
√
𝑛) on the Abelian Hidden Shift Problem.

58

Chapter 5

Quantum Cryptanalysis of CSIDH

This section will focus on the main publications describing quantum cryptanalysis of

CSIDH, as well as attempting to estimate the error-corrected cost of breaking CSIDH

implemented with the surface code. All use the reduction created in Chapter 4, and

variants using newly discovered speed-ups for certain parts of the isogeny-finding

problem.

The main method of attacking CSIDHwith access to quantum computers is through

Kuperberg’s algorithm for the DHSP or a variant of it such as the C-sieve [56]. This

makes key recovery of CSIDH into a two-step task:

(1) A quantum oracle that evaluates the group action when called on a random

‘labeled’ quantum state.

(2) A sieve that combines labeled states to get a more favourable state to measure

and give information on the secret key.

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 59

5.1 Literature Review

Castryck, Lange, Martindale, Panny, Renes 2018

The original paper for CSIDH gave several points on its quantum cryptanalysis [2].

These all focused on the problem of finding an isogeny between the two curves 𝐸𝐴

and 𝐸0. Some quantum algorithms to solve the problem are ones that can be applied

directly from quantum algorithms to break SIKE and SIDH.

Grover’s Algorithm and Claw Finding

The original CSIDH paper briefly mentions the possibility of applying Grover’s algo-

rithm to the problem of finding the secret isogeny. Grover’s algorithm is also known as

the quantum search algorithm: given a set 𝑆 of 𝑛-bit strings that are uniquely marked

apart from the rest of the set of 𝑛-bit strings, the algorithm returns an element of 𝑆 with

high probability. This algorithm can be applied to the problem of finding an isogeny

beween two elliptic curves; Biasse, Jao and Sankar’s 2014 paper [57] conjectures a

complexity of 𝑂 (𝑝1/4) where 𝑝 is the characteristic of a finite field F𝑞 , and quantum

time complexity 𝐿𝑝 [1/2,
√
3/2] when both elliptic curves are defined over F𝑝 , notably

subexponential.

The original paper also gives some concrete estimates using implementations of

CSIDH, see Figure 5.1:

It also includes responses to the wave of cryptanalysis published after the paper’s

first release in a later addendum.

Bonnetain and Schrottenloher, 2018

Bonnetain and Schrottenloher [8] use a variant on Kuperberg’s algorithm for arbitrary

finite cyclic groups in order to give somemore concrete estimates of the time complexity

of finding the secret isogeny, assuming a very large amount of quantum memory is

available. Their estimations return the necessary number of bits in a quantum computer

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 60

Figure 5.1: Estimated attack complexity ignoring limits on depth from CSIDH’s original
publication [2]. The leftmost columns give classical and quantum query complexities
whereas the rightmost three columns give overall attack costs. We take 𝑁 = #𝐶𝑙 (O) =
𝑂 (√𝑝) and any 𝑂 (1) complexities to be zero.

for CSIDH at 21.8
√
log𝑁+2.3 bits and around (5𝜋2/4)21.8

√
log𝑁 for 𝑁 = #𝐶𝑙 (O) = 𝑂 (√𝑝).

These numbers increase greatly for larger implementations of CSIDH and focus more

on the smallest time result rather than considering depth/space. They return a time

complexity lower than the first paper’s estimate but a depth that may be impractical for

real implementation, see 5.2. Bonnetain and Schrottenloher also notably do not include

estimates for costly operations in finding the secret isogeny, according to Quantum

Circuits for the CSIDH: optimizing quantum evaluation of isogenies by Bernstein, Lange,

Martindale and Panny [58].

According to a forum post updating their paper, their most recent version "contains

a 219 quantum query cost using a variant of the Regev/Childs-Jao-Soukharev algorithm,

with a gate cost of 248−250" per oracle call (the qubits used are only those of the oracle),

depending on circuit optimization. This leads to an overall gate cost of 267 − 269 which

is still far below the original paper’s conjectured 2128 security, see Figure 5.2.

Bernstein, Lange, Martindale, Panny, 2018

Published in 2018, the paper Quantum Circuits for the CSIDH: optimizing quantum

evaluation of isogenies paper [58] analyses algorithms for computing the group action

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 61

Figure 5.2: From Bonnetain and Shrottenloher’s paper [8], showing the quantum time
and qubits for the class group action for the original CSIDH parameters.

via the DHSP and their cost, detailing several speedups which help give a good idea of

the cost of breaking CSIDH.

Finding the attack costs for any new curve takes a significant amount of work, a

large part of which is in finding the cost of each query for queries in various DHSP

algorithms.

One of the paper’s main results is that given a particular implementation of CSIDH,

the number of nonlinear bit operations in the group action can be estimated. Further,

if it takes 𝐵 nonlinear bit operations to carry out the group operation,that implies at

most 2𝐵 Toffoli gates or 14𝐵 T-gates could be used with probability of failure at most 𝜖

>0.

For any given CSIDH parameters, the paper makes it possible to find (𝐵, 𝑒) and

so realise the cost of a specific implementation in terms of nonlinear bit operations,

Toffoli gates and T-gates.

The paper also builds upon the work of Bonnetain and Schrottenloher [8] who

gave an estimate for breaking CSIDH with only 237 quantum gates per query and a

total of only 271 quantum gates. The paper notes several areas where costly parts of

computing the group action are overlooked. The paper also includes a simulator open

to anyone to conduct their own cost calculations on [3]

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 62

Peikert, 2020

In February 2020, Peikert published a paper refuting the claimed NIST level 1 security

of CSIDH with his paper He Gives C-Sieves on the CSIDH [7]

This paper generalised the collimation sieve seen in Figure 5.3, or c-sieve method

created by Kuperberg that improved upon the previous hidden shift algorithm with

exponentially less quantum memory. The generalisation of the sieve now works for

any finite cyclic group.

The paper splits up attacking CSIDH into two parts: the first evaluating the group

action with a quantum oracle, and the second a sieving procedure that combines states

to generate more favourable ones. The sieve works on states generated by the oracle

to create some highly favourable states which can be used to reveal useful information

about the hidden shift (and so learn the secret isogenies).

In 2011 Kuperberg’s new paper on the collimation sieve reduced the quantum

space needed for the original Kuperberg’s algorithm to linear 𝑂 (𝑁) space, but also

maintained exponential𝑂 (exp
(√
𝑁

)
) quantum time and classical space. The paper also

introduced possible trade-offs for quantumly accessible classical memory and quantum

time.

Figure 5.3: Structure of a collimation sieve [7].

Definition 5.1 (Quantumly Accessible Classical Memory). Quantumly accessible

classical memory (also called QROM, Quantum Read-Only Memory [7]) is classical

memory that is readable but not writeable in superposition

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 63

Peikert’s contributions to the paper mostly involves the generalisation of the c-sieve

to work for most CSIDH group parameters, and concretely estimates the number of

queries and amount of QROM the sieve will use for different implementations. The

results give both a security estimate in terms of oracle queries and bits of QROM, but

also in terms of T-gates and nonlinear bit operations.

The oracle query complexity for CSIDH-512 is given to be 219 oracle queries and 232

bits of QROM, or alternatively for a trade-off 216 oracle queries and 240 bits of QROM.

This improves upon Bonnetain and Schrottenloher’s estimates [8] as it used QROM

rather than quantum memory. It is important to note that these give ‘almost’ all of the

secret key and so could be improved upon with slightly different methods to reveal

even more of the key. In experiments on the implementation CSIDH-512, Peikert found

that:

"...the required classical resources are cryptanalytically insignificant: at

most a few core-days on a commodity server with 128GB or 512GB of RAM,

using only four CPU cores and less than 100GB RAM per experiment."

The T-gate complexity for an evaulation of the CSIDH-512 oracle is given as 240

nonlinear bit operations, which is equivalent to 240 − 244 T-gates. When combining

this with the sieve and finding the overall complexity for key recovery, the paper finds

between 256 − 260 T-gates are needed, plus 240 bits of QROM.

The paper notes that the sieve can close to perfectly parallelise the oracle calls and

steps of the collimation sieve, meaning that the depth of the full attack is reduced to

almost the depth of only the oracle. An example for one set of sieve parameters for

CSIDH-512 gives T-gate complexity of the sieve as between 238 − 247, but needs at

least 214 oracle calls and 239 T-gates; this means the complexity of the overall oracle

and sieve method is not significantly when using the c-sieve than beyond just the

complexity of using the oracle to get group evaluations.

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 64

"The attack’s quantum gate complexity of about 256 ∼ 260 is far below

the required 2130 for the low end of the MAXDEPTH range, and even

significantly below the required 274 for the high end."

However Peikert’s paper has been criticised for a number of reasons. One such is

the author’s equivalence of ‘nonlinear bit operations’ and ‘nonlinear qubit operations’

which are not the same in the original paper. Some have criticised the assumption of

low-cost access to RAM with a quantum computer, stating that the assumption that

this cost is dwarfed by the oracle calls to break CSIDH is implausible and not well

explained. This is refuted by the paper whose method Peikert uses to access QROM

[59] and interestingly gives some information on the cost of error-correcting access to

memory too.

5.2 Error Corrected Quantum Cryptanalysis of

CSIDH

When considering how we can go about breaking CSIDH in ‘real life’ thinking about

fault-tolerant algorithms and error correction is extremely important; without error

correction, cryptanalysis of CSIDH using the above methods could easily give incorrect

keys or return no key at all.

To think about error-corrected quantum cryptanalysis of CSIDH, we need to con-

sider what the structure will look like if we encode a circuit for cryptanalysis of CSIDH

into the surface code.

We assume that we can implement this in the surface code without too much

difficulty - while the surface code might not be the most effective method of efficiently

correcting errors, its scalability makes it an ideal starting point for testing real error

correction of CSIDH.

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 65

Overheads

The costs of error correction on surface codes are split between that for Clifford gates

and that for T-gates. Clifford gates are easy to error-correct [46] but T-gates are more

difficult. We could then take the number of T-gates as a ‘leading term’. Therefore we

could count the overhead of computing the CSIDH group action as how many T-gates

there are × how long or how difficult it is to error correct each T-gate.

We could also consider the space and time complexity of surface code error correc-

tion algorithms. Several papers have been published that attempt to reduce the time

complexity of error correction on a large quantum computer. Notably, Austin Fowler’s

2013 paper Optimal Complexity Correction of Correlated Errors in the Surface Code[60]

gives an algorithm that efficiently corrects bit and phase flips in 𝑂 (1) time complexity

given a sufficiently large quantum computer. This could make the oracle queries not

much more difficult to compute with error correction included. However the resources

used will greatly increase for any method of error correction in CSIDH due to the need

for magic state distillation to create error-corrected T-gates.

Samuel Jaques created an interesting calculator [61] for use with his papers, using

the description of the surface code from Fowler’s 2012 paper [46]. This calculator can

take a generic or specialised quantum algorithm (for example Shor’s algorithm) to

give an estimated error-corrected cost of running that algorithm, in terms of physical

qubits, metres, surface code cycles,𝑇 -depth,surface code distance and number of magic

state factories (sections of code used to create magic states). This extensive list of

measurements gives a variety of possible metrics we can use to think about how to

measure the overall cost of running cryptanalysis on CSIDH.

Overall Complexity

In the Quantum circuits for the CSIDH paper [58], the authors provide an example

of their code run on an implementation of CSIDH, CSIDH-512. This is broken in 240

non-linear bit operations on a quantum computer, or alternatively 14×240 T-gates using

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 66

the paper’s conjecture on the weight of a T-gate compared to an ordinary non-linear

bit operation, or Peikert’s estimation of between 240 and 244 quantum T-gates.

Peikert’s 2020 paper [7] gives estimations on the security of CSIDH assuming that

the user has low-cost use of QROM. The paper Peikert references for QROM [59] states

that the T-gate complexity of a single collimation step can be bounded using classical

memory plus just 4𝐷 T-gates. Further, the paper Peikert references [59]:

"Compiling to the surface code fault tolerant gates and assuming per gate

error rates of one part in a thousand reveals that one can error correct ...

using only about a million superconducting qubits in a matter of hours for

a realistic quantum computer."

This suggests that error correction for QROM access might be trivial and dwarfed by

oracle query error correction. Further, some fault-tolerant algorithms for QROM may

not require any error correction. Therefore the cost of error-corrected cryptanalysis of

CSIDH using Peikert’s c-sieves method [7] can be considered without the additional

cost of using QROM.

Jaques’s calculator [62] can provide some excellent metrics for the overall cost of

breaking CSIDH-512. However, the closest method of breaking CSIDH included in

the calculator is only ‘generic’. This will not take into account communication across

qubits and error correcting idle qubits, of which there are many in breaking CSIDH.

This would waste a large amount of time, so any fault-tolerant algorithm for breaking

CSIDH would need to be adapted to each implementation and avoid unnecessary error

correction.

Error-corrected T-gate Complexity

As mentioned, the oracle query complexity for CSIDH-512 is 216 oracle queries and 240

bits of QROM. Given an optimistic cost of 240 − 244 T-gates per oracle, we have overall

256 − 260 =T-gate complexity for CSIDH-512, potentially slightly higher depending

on implementation. This is the T-count. If we assume (plausibly) that using QROM is

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 67

perfectly parallelisable, then we can find the error corrected complexity of CSIDH-512

is simply the T-count multiplied by the cost per T-gate. We could take this as the

time taken for one T-gate to operate (which takes only nanoseconds so is difficult to

measure). However, since a T-gate operates on only one (logical) qubit we could find

the total number of physical qubits needed for all the T-gate operations by multiplying

the number of T-gates by the number of physical qubits needed for one logical qubit.

This can range from 1,000 to 10,000 at the moment [46].

So we could give one estimate for the number of qubits it takes to break CSIDH

as 260 × 1000 = 1.1529 × 1021, or 236 qubits. However, this does not take magic state

distillation into account, which undergoes several rounds of distillation to create a

fault-tolerant T-gate, using both time and qubits.

Campbell’s 2017 paper [48] gives the space-time cost of a T-gate realized in a

distance-𝑑 surface code as "𝐶𝑇 ×𝑑3" where𝐶𝑇 = 160− 310. It is currently unclear how

this could be applied to CSIDH to give a concrete T-gate cost, as the distance for the

surface code could vary massively. However, this is an area for future research.

Error-corrected Oracle Call Complexity

As mentioned, the oracle query complexity for CSIDH-512 is 216 oracle queries. The

use of error-correction does not increase the number of oracle calls - however it may

increase the time/resources taken for one oracle call to succeed.

Jaques’s calculator

The calculator returns, for 240 logical qubits, a circuit depth of 240 (using NIST’s

standards) and 264 T-gates made with perfectly parallelised magic state factories that

the overall cost of breaking CSIDH-512 on a generic algorithm is as follows:

"The circuit to compute this will have a sequential depth of 1.10𝑒 + 12

surface code cycles (1.27 days) and will require 4.52𝑒 + 16 physical qubits

CHAPTER 5. QUANTUM CRYPTANALYSIS OF CSIDH 68

(an area of at least 452,398,896.21 square meters). The distance of the code

is 57.

It will use 14,428,405,755 magic state factories. To distill a magic state will

require 2 distillation(s), with surface code distance(s) 57 and 29."

We have allowed for an error rate of 0.1 percent, a threshold of 0.316 percent, 11

cycles of the surface code for a fully parallel distillation as in Fowler’s 2012 paper [46].

We have also completely prioritised time over memory costs to the maximum extent

that the calculator allows. While the time taken for the algorithm seems plausible, the

number of square metres of space taken up certainly does not. In reality, breaking

CSIDH would cost far fewer physical qubits than this for several reasons:

• An efficient algorithm would not need error correction for idle qubits (though

this takes no extra time, it does take extra space).

• An efficient algorithm would make use of the 240 bits of QROM rather than extra

unnecessary qubits

• Advances in error correction mean that instead of 10000 physical qubits per

logical qubit, we could instead need only 1000 or maybe even 100.

• We have sacrificed space for speed on this particular calculation, meaning the

same algorithm could run with far fewer qubits.

69

Chapter 6

Conclusion

Summary

We have conducted a review of error-corrected quantum cryptanalysis of CSIDH,

taking into account the necessary background to understand this fluid and changing

topic. We introduced the notions of cryptology and elliptic curves to describe CSIDH

before moving into quantum computation using the surface code and error correction.

These two areas have been joined to introduce the notion of an algorithm to break

CSIDH-512 implemented on the surface code.

The difficulty of choosing how to measure the size of the problem of error-corrected

cryptanalysis of CSIDH has been noted; while many studies give the size of quantum

algorithms in T-gates, quantifying how to error-correct those T-gates is difficult due to

the number of variables. Physical qubits, magic gates and ‘the amount of’ parallelisation

all need to be taken into account. We can consider space-time trade offs in an abstract

sense, but without moving more deeply into the structure of an algorithm for CSIDH

run using the surface code, it is difficult to provide precise results. However, the tool

created by Jaques gave an extremely interesting and comprehensive insight into the

structure of such a cryptanalysis on the surface code and provided us with many ideas

as to how this thesis could be developed if given enough time.

CHAPTER 6. CONCLUSION 70

Recommendations

Overall, CSIDH is still a fairly interesting possible scheme for use as a drop-in replace-

ment for Diffie-Hellman. From the literature review, its subexponential security limits

its usefulness in all but the largest implementations, and had it been entered into the

NIST competition, may have been overlooked in favour of schemes that (currently)

look more robust [63]. However, CSIDH appears to have more significant overheads

when accounting for error correction than some other schemes not based on isogenies

[4] so its real-world application might not rule it out altogether. It is also important

to note that schemes that have subexponential classical time complexity to break are

still regarded as fairly secure, like RSA [64]. More research should be done into this

particular field.

More generally, isogeny-based schemes are still motivating a lot of research; not

only for applications in key exchanges but also signature and encryption schemes. The

main idea of CSIDH has generated a large amount of interest since its inception in

CRS [28, 27] and will continue to do so.

Further research

Given the opportunity, there are a number of pathways where the ideas in this thesis

could be developed.

Time and Space Limitations

In this paper we have only considered a few varieties of time/space trade-offs in the

literature review. Bonnetain and Schrottenloher [8] introduce a number, as well as

Fowler’s 2012 paper [46] giving several variations of surface code implementation

with different requirements on space and time. Peikert’s c-sieves paper [7] proposes

alternatives to Bonnetain and Schrottenloher’s work, but in place of large space and

time complexity requires a large amount of QROM.

CHAPTER 6. CONCLUSION 71

It would be interesting to consider various combinations of these trade-offs, consid-

ering the two separate goals of speed and space: how can we conduct error-corrected

cryptanalysis of CSIDH in as little time as possible, or in as little space as possible?

It would also be interesting to consider different or limited access to QROM. Notably,

this is a very popular area for research in CSIDH at the moment owing to the variety

of trade-offs and different types of error-correction that can be implemented.

Schemes Based on CSIDH

SeaSign is a signature scheme based on CSIDH’s group action and the Fiat-Shamir

protocol. While the security of the problem still relies on the same group action

evaluation as CSIDH, it would be beneficial to research into this area to see if any other

parts of the scheme or its cryptanalysis are significantly more costly than CSIDH.

CSURF, or CSIDH on the surface is an implementation of CSIDH that uses the

endomorphism ring 𝑍 [(1 + √−𝑝)/2] [65]. On average, it runs 5.68 percent faster than

CSIDH-512 to the same level of security. It would be very interesting to look into what

makes this key exchange faster, and if that speed could affect the cryptanalysis of the

system.

Error-Correcting Other Schemes

Since CSIDH was not entered into NIST’s competition, it could be very beneficial to

look into the realistic cryptanalysis of NIST finalists and alternates. A passing comment

in the New Quantum Cryptanalysis of CSIDH forum [4] stated that:

"There’s a huge additional cost for fault tolerance, and presumably this

will be an even bigger issue for isogeny computations than it is for Grover

attacks against AES, SHA-2, ... Presumably the gap will be larger than the

gap for, e.g., the AES attack, which has far fewer idle qubits and much less

communication overhead."

CHAPTER 6. CONCLUSION 72

Though a brief comment, this was very interesting and generated a number of

possible roads to explore. It would be interesting to look into how the ‘difficult to

error-correct’ parts of CSIDH compare with the most costly parts of other schemes

and why that might be.

More Methods of Analysis

There are several tools we can apply to look at the quantum resource estimation of

CSIDH in other ways [66]. Jaques’s calculator gives invaluable insight into the structure

of an algorithm run on the surface code, and how that would need to be adjusted for

different algorithms so they can run as quickly as possible. It would be interesting to

look into parts of breaking CSIDH that could be made more efficient on the surface

code. Some sources mention the amount of qubits in breaking CSIDH that are idle for

the majority of the time [4]. How could we change an algorithm to not correct errors

that occur on these qubits every cycle? How could we more efficiently use these qubits

in different areas. We could also talk about how much we can parallelise magic state

distillation for CSIDH. How would we allocate space on a quantum computer to do

this as efficiently as possible?

Moving Away From the Surface Code

We could also consider using another method of error correction. Though the surface

code is simple, it has been noted as not the most efficient method for error correction

in some cases. Further research could be done to look into what other candidates

exist that could be used to conduct error corrected cryptanalysis of CSIDH, especially

Toric code and subsystem code. It would be interesting to see if there are any parts of

breaking CSIDH that are more suited to another type of quantum error-correction.

There are so many new avenues to explore that following them all would turn a

master’s thesis into a PhD. Such is the case in cryptology at themoment; the possibilities

of quantum computers in cryptology can feel endless. Though this thesis has only

CHAPTER 6. CONCLUSION 73

given a brief insight into one specific area, we hope it has piqued the reader’s interest

in the subject and shown them a glimpse into the future of security.

74

Appendix A

Appendix

We assume a knowledge of a few things in this thesis, namely group theory (with

a small amount of number theory), and some areas of computer science linked to

asymptotic complexity and oracles.

Group Theory and Number Theory

To describe CSIDH, it is necessary to have a rudimentary understanding of ideal-class

groups in relation to elliptic curves [67]. Defining an ideal-class group takes several

preliminary definitions. First we define order, a term well known in group theory but

redefined in ring theory:

Definition A.1 (Order). The order O of a ring 𝐴 is a subring of 𝐴 such that 𝐴 is finite

dimensional over Q and O is an abelian group with a basis generated by a basis for 𝐴

over Q.

Definition A.2 (O-Ideal). The ideal of a subring O is known as an O-ideal.

Definition A.3 (Fractional Ideal). A fractional ideal of O is an O-submodule of a

field F of the form 𝛼𝔄, where 𝛼 ∈ F∗ and 𝔄 is an O-ideal.

APPENDIX A. APPENDIX 75

Definition A.4 (Invertible Fractional Ideal). An invertible fractional ideal of O

is a fractional ideal of O, 𝔄, where there exists another fractional ideal 𝔅 such that

𝔄𝔅 = O. We write that 𝔄−1 = 𝔅. Invertible fractional ideals are also written as 𝐼 (O.

Definition A.5 (Principle Fractional Ideal). A principle fractional ideal of O is a

fractional ideal of O, 𝔄, where 𝔄 is generated by a single element 𝑎 ∈ O through

multiplication by every element of O. Principle Fractional Ideals are also written as

𝑃 (O).

Definition A.6 (Ideal-Class Group). The ideal-class group cl(O) is defined as the

quotient:

cl(O) = 𝐼 (O)/𝑃 (O)

This group will allow us to perform actions on elliptic curves in Chapter 2.3 and

Chapter 4 to create CSIDH.

Computer science definitions

We provide some definitions and background for elements of the project that refer to

complexity/cost, and algorithms with queries and oracles.

Asymptotic complexity

When talking about how difficult it is to ‘break’ or solve a problem in cryptography

using an algorithm, it is very useful to describe it in terms of asymptotic complexity.

Asymptotic complexity focuses on how the difficulty of solving a problem grows

with the size of the problem. We can measure this growth in several ways: time,

space/memory on a computer and number of nonlinear bit operations to name a few.

For example, solving problem A with input size 1 might take 5 seconds, but solving

problemAwith input size 2 might take 20 seconds. How canwe describe the complexity

of problem A in a more general case?

APPENDIX A. APPENDIX 76

Big-O Notation

Big-O notation is a widely used method of measuring the complexity of a problem. It

describes the growth rate of a problem as a function - for example𝑂 (𝑛2) or 𝑂 (𝑒𝑛). For

an input size 𝑛, the size of the problem grows roughly proportional to the function

inside the brackets in terms of 𝑛. We generally take this function to be the upper bound

of the size of the problem, and generally ignore any constant terms or non-leading

terms.

Definition A.7. 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) if there exist real 𝑐 > 0 and integer 𝑛0 ≥ 0 such that

for all 𝑛 ≥ 𝑛0, 𝑓 (𝑛) ≤ 𝑐𝑔(𝑛).

For example, say problem B takes an input of size 𝑛 and returns an output in

3𝑛2 + 2𝑛 + 1 seconds. We say that Problem B has a time complexity of 𝑂 (𝑛2). Big-O

notation can be used to describe most measures of complexity including time and

space. This can be applied both to classical and quantum computers. For example, the

Discrete Logarithm Problem (DLP) has classical time complexity 𝑂 (
√
𝑁) when solved

with the Baby-Step Giant-Step algorithm, but has quantum time complexity𝑂 (log𝑁 3)

using Shor’s algorithm, where 𝑁 is the order of a cyclic group being used in the DLP.

We say an algorithm is efficient if it has no more than polynomial time complexity.

A polynomial time complexity means that the Big-O function is a polynomial, e.g. 𝑛2

and 𝑛4.

L-notation

In parts of this thesis, L notation is instead used. L notation is an alternative to Big-O

notation that is useful for expressing subexponential terms. It is written as follows:

𝐿𝑛 [𝛼, 𝑐] = 𝑒 (𝑐+𝑜 (1)) (log𝑛)
𝛼 (log log𝑛)1−𝛼

Where 𝑐 is a positive constant. When 𝛼 is between 0 and 1, the complexity of the

function is subexponential and superpolynomial.

APPENDIX A. APPENDIX 77

Oracles and black box functions

An oracle is essentially a black box function, a function that takes an input and returns

an output without the user having any knowledge of how the function works [68].

In computer science, oracles are asked ‘queries’ and return ‘answers’. On a classical

computer, an oracle is a function of the form 𝑓 : {0, 1}𝑛 → {0, 1}𝑚

Often counting the number of queries made to an oracle can be a measure of how

difficult a problem is to solve. Many problems exist that can be solved with fewer

queries to an oracle on a quantum computer than a classical computer.

Reductions

Definition A.8. A reduction is a proof relating the difficulty of solving one problem to

another [69]. For example say that for 𝑌 a successful adversary against a problem 𝐵,

there is a successful adversary against a problem 𝐴 that uses 𝑌 . Then we can say that

there exists a reduction to solve 𝐴. Essentially, reductions prove that one problem is at

most as difficult to solve as another.

Two problems might use slightly modified versions of one solution method to show

this.

78

Bibliography

[1] Peter Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. https://klein.mit.edu/~shor/papers/algsfqc-dlf.p

df, 1995. (Accessed on 04/13/2022).

[2] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.

CSIDH: An efficient post-quantum commutative group action. https://csid

h.isogeny.org/csidh-20181118.pdf, 2018. (Accessed on 04/13/2022).

[3] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum

isogenies: Software. https://quantum.isogeny.org/software.html.

(Accessed on 04/19/2022).

[4] Chris Peikert, Daniel Apon, and Daniel Bernstein. New quantum cryptanalysis of

CSIDH - forum post. https://groups.google.com/a/list.nist.go

v/g/pqc-forum/c/svm1kDy6c54?pli=1. (Accessed on 04/19/2022).

[5] Post-Quantum Cryptography. Post-quantum cryptography standardisation |

CSRC. https://csrc.nist.gov/projects/post-quantum-cryp

tography/post-quantum-cryptography-standardization, 2022.

(Accessed on 04/13/2022).

[6] Post-Quantum Cryptography. Post-quantum cryptography standardisation evalu-

ation criteria | CSRC. https://csrc.nist.gov/projects/post-quan

tum-cryptography/post-quantum-cryptography-standardiza

https://klein.mit.edu/~shor/papers/algsfqc-dlf.pdf
https://klein.mit.edu/~shor/papers/algsfqc-dlf.pdf
https://csidh.isogeny.org/csidh-20181118.pdf
https://csidh.isogeny.org/csidh-20181118.pdf
https://quantum.isogeny.org/software.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/svm1kDy6c54?pli=1
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/svm1kDy6c54?pli=1
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

BIBLIOGRAPHY 79

tion/evaluation-criteria/security-(evaluation-criteria),

2022. (Accessed on 04/13/2022).

[7] Chris Peikert. He gives c-sieves on the CSIDH. Cryptology ePrint Archive, Report

2019/725, 2019. https://ia.cr/2019/725.

[8] Xavier Bonnetain and Andre Schrottenloher. Quantum security analysis of CSIDH.

Cryptology ePrint Archive, Report 2018/537, 2018. https://ia.cr/2018/5

37.

[9] Tony Damico. A brief history of cryptography - inquiries journal. http://ww

w.inquiriesjournal.com/articles/1698/a-brief-history-o

f-cryptography, 2009. (Accessed on 04/13/2022).

[10] Martine Diepenbroek. Myths and histories of the spartan scytale — university

of bristol. https://research-information.bris.ac.uk/en/stude

ntTheses/myths-and-histories-of-the-spartan-scytale, 2021.

(Accessed on 04/13/2022).

[11] Sweigart. Making paper cryptography tools. https://inventwithpython

.com/cracking/chapter1.html. (Accessed on 04/15/2022).

[12] Hemanta Maji. Perfect security definition. https://www.cs.purdue.edu/

homes/hmaji/teaching/Fall%202016/lectures/03.pdf. (Accessed

on 04/15/2022).

[13] Auguste Kerckhoffs. La cryptographie militaire (première partie). https://

www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf,

1883. (Accessed on 04/15/2022).

[14] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://ia.cr/2019/725
https://ia.cr/2018/537
https://ia.cr/2018/537
http://www.inquiriesjournal.com/articles/1698/a-brief-history-of-cryptography
http://www.inquiriesjournal.com/articles/1698/a-brief-history-of-cryptography
http://www.inquiriesjournal.com/articles/1698/a-brief-history-of-cryptography
https://research-information.bris.ac.uk/en/studentTheses/myths-and-histories-of-the-spartan-scytale
https://research-information.bris.ac.uk/en/studentTheses/myths-and-histories-of-the-spartan-scytale
https://inventwithpython.com/cracking/chapter1.html
https://inventwithpython.com/cracking/chapter1.html
https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202016/lectures/03.pdf
https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202016/lectures/03.pdf
https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf
https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf

BIBLIOGRAPHY 80

[15] Yogesh Kumar, Rajiv Munjal, and Harsh Bardhan Sharma. Comparison of symmet-

ric and asymmetric cryptography with existing vulnerabilities and countermea-

sures. In Comparison of Symmetric and Asymmetric Cryptography with Existing

Vulnerabilities and Countermeasures, 2011.

[16] V.K. PACHGHARE. Cryptography and Information Security, Third Edition. PHI

Learning Pvt. Ltd., 2019.

[17] E. S. I. Harba. Secure data encryption through a combination of aes, rsa and hmac.

Engineering, Technology and Applied Science Research, 7(4):1781–1785, Aug. 2017.

[18] Dr. Asha Ambhaikar. Aes and rsa-based hybrid algorithms for message encryption

and decryption. INFORMATION TECHNOLOGY IN INDUSTRY, 9:273–279, 03 2021.

[19] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, 1976.

[20] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-

interactive key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors,

Public-Key Cryptography – PKC 2013, pages 254–271, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[21] Yassine Mrabet. Ecclines-3.svg - wikimedia commons file. https://comm

ons.wikimedia.org/w/index.php?curid=3112726. (Accessed on

04/16/2022).

[22] Dyland Pentland. The j-invariant of an elliptic curve. https://math.mit.e

du/research/highschool/primes/materials/2018/conf/, 2018.

(Accessed on 04/16/2022).

[23] Rich Schwartz. The elliptic curve group law. https://www.math.brown.e

du/reschwar/M1540B/elliptic.pdf. (Accessed on 04/16/2022).

https://commons.wikimedia.org/w/index.php?curid=3112726
https://commons.wikimedia.org/w/index.php?curid=3112726
https://math.mit.edu/research/highschool/primes/materials/2018/conf/
https://math.mit.edu/research/highschool/primes/materials/2018/conf/
https://www.math.brown.edu/reschwar/M1540B/elliptic.pdf
https://www.math.brown.edu/reschwar/M1540B/elliptic.pdf

BIBLIOGRAPHY 81

[24] Andrew Sutherland. Lecture notes 5. https://math.mit.edu/classes

/18.783/2015/LectureNotes5.pdf, 2015. (Accessed on 04/16/2022).

[25] Daniel Brown. Standards for efficient cryptography: Elliptic curve cryptography.

http://www.secg.org/sec1-v2.pdf, 2009. (Accessed on 04/16/2022).

[26] David et al Jao. SIKE – supersingular isogeny key encapsulation. https:

//sike.org/, 2011. (Accessed on 04/16/2022).

[27] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,

Report 2006/291, 2006. https://ia.cr/2006/291.

[28] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on

isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. https://ia.c

r/2006/145.

[29] Post-Quantum Cryptography. Post-quantum cryptography standardisation |

CSRC. https://csrc.nist.gov/Projects/post-quantum-cr

yptography/post-quantum-cryptography-standardization.

(Accessed on 04/16/2022).

[30] Paul Benioff. The computer as a physical system: A microscopic quantum me-

chanical hamiltonian model of computers as represented by turing machines.

Journal of Statistical Physics, 22:563–591, 05 1980.

[31] IBM. What is quantum computing? | IBM. https://www.ibm.com/topics

/quantum-computing. (Accessed on 04/17/2022).

[32] Leonard Adleman. A subexponential algorithm for the discrete logarithm problem

with applications to cryptography. In 20th Annual Symposium on Foundations of

Computer Science, pages 55–60, 1979.

https://math.mit.edu/classes/18.783/2015/LectureNotes5.pdf
https://math.mit.edu/classes/18.783/2015/LectureNotes5.pdf
http://www.secg.org/sec1-v2.pdf
https://sike.org/
https://sike.org/
https://ia.cr/2006/291
https://ia.cr/2006/145
https://ia.cr/2006/145
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.ibm.com/topics/quantum-computing
https://www.ibm.com/topics/quantum-computing

BIBLIOGRAPHY 82

[33] Mark Lapedus. The great quantum computing race. https://semiengine

ering.com/the-great-quantum-computing-race/, 2021. (Accessed

on 04/17/2022).

[34] IBM’s 127-qubit eagle is the biggest quantum computer yet. https://singul

arityhub.com/2021/11/22/ibms-127-qubit-eagle-is-the-bi

ggest-quantum-computer-yet/#:~:text=Progress%20in%20qua

ntum%20computing%20is,of%20a%20127%2Dqubit%20processor.

(Accessed on 04/27/2022).

[35] Jessica Hamezlou, Tate Ryan-Mosely, Niall Firth, and Patrick Howell O’Neil.

How a quantum computer could break 2048-bit rsa encryption in 8 hours | MIT

technology review. https://www.technologyreview.com/2019/05/3

0/65724/how-a-quantum-computer-could-break-2048-bit-rs

a-encryption-in-8-hours/, 2019. (Accessed on 04/17/2022).

[36] Daniel Bernstein. Introduction to post-quantum cryptography. http://ww

w.pqcrypto.org/www.springer.com/cda/content/document/c

da_downloaddocument/9783540887010-c1.pdf, 2009. (Accessed on

04/17/2022).

[37] Renato Renner. Security of quantum key distribution, 2005.

[38] P. A. M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings

of the Cambridge Philosophical Society, 35(3):416–418, 1939.

[39] E.G. Rieffel andW.H. Polak. Quantum Computing: A Gentle Introduction. Scientific

and Engineering Computation. MIT Press, 2011.

[40] Oxford Reference. Logic gate. https://www.oxfordreference.com/

view/10.1093/oi/authority.20110810105307777. (Accessed on

04/17/2022).

https://semiengineering.com/the-great-quantum-computing-race/
https://semiengineering.com/the-great-quantum-computing-race/
https://singularityhub.com/2021/11/22/ibms-127-qubit-eagle-is-the-biggest-quantum-computer-yet/#:~:text=Progress%20in%20quantum%20computing%20is,of%20a%20127%2Dqubit%20processor.
https://singularityhub.com/2021/11/22/ibms-127-qubit-eagle-is-the-biggest-quantum-computer-yet/#:~:text=Progress%20in%20quantum%20computing%20is,of%20a%20127%2Dqubit%20processor.
https://singularityhub.com/2021/11/22/ibms-127-qubit-eagle-is-the-biggest-quantum-computer-yet/#:~:text=Progress%20in%20quantum%20computing%20is,of%20a%20127%2Dqubit%20processor.
https://singularityhub.com/2021/11/22/ibms-127-qubit-eagle-is-the-biggest-quantum-computer-yet/#:~:text=Progress%20in%20quantum%20computing%20is,of%20a%20127%2Dqubit%20processor.
https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/
https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/
https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://www.oxfordreference.com/view/10.1093/oi/authority.20110810105307777
https://www.oxfordreference.com/view/10.1093/oi/authority.20110810105307777

BIBLIOGRAPHY 83

[41] Michael Charemza. Quantum circuit diagrams. https://warwick.ac.uk/

fac/sci/physics/research/cfsa/people/pastmembers/chare

mzam/pastprojects/mcharemza_quant_circ.pdf, 2006. (Accessed

on 04/17/2022).

[42] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Study of decoherence

in quantum computers: A circuit-design perspective. CoRR, abs/1904.04323, 2019.

[43] Todd Brun. Lecture notes on error correction. https://viterbi-web.usc.

edu/~tbrun/Course/lecture20.pdf, 2017. (Accessed on 04/17/2022).

[44] Noah Linden and Ryan Mann. Quantum Computation MATHM0023 Lecture Notes.

University of Bristol School of Mathematics, 2021.

[45] Quantum Computing UK. Quantum error correction: Shor code in qiskit —

quantum computing UK. https://quantumcomputinguk.org/tutor

ials/quantum-error-correction-shor-code-in-qiskit, 2020.

(Accessed on 04/22/2022).

[46] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Physical

Review A, 86(3), sep 2012.

[47] Shota Nagayama. Surface code error correction on a defective lattice. https://

iopscience.iop.org/article/10.1088/1367-2630/aa5918/pdf,

2017. (Accessed on 04/17/2022).

[48] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards

fault-tolerant universal quantum computation. Nature, 549(7671):172–179, sep

2017.

[49] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal

clifford gates and noisy ancillas. Phys. Rev. A, 71:022316, Feb 2005.

https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/pastmembers/charemzam/pastprojects/mcharemza_quant_circ.pdf
https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/pastmembers/charemzam/pastprojects/mcharemza_quant_circ.pdf
https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/pastmembers/charemzam/pastprojects/mcharemza_quant_circ.pdf
https://viterbi-web.usc.edu/~tbrun/Course/lecture20.pdf
https://viterbi-web.usc.edu/~tbrun/Course/lecture20.pdf
https://quantumcomputinguk.org/tutorials/quantum-error-correction-shor-code-in-qiskit
https://quantumcomputinguk.org/tutorials/quantum-error-correction-shor-code-in-qiskit
https://iopscience.iop.org/article/10.1088/1367-2630/aa5918/pdf
https://iopscience.iop.org/article/10.1088/1367-2630/aa5918/pdf

BIBLIOGRAPHY 84

[50] Daniel Litinski. A game of surface codes: Large-scale quantum computing with

lattice surgery. Quantum, 3:128, mar 2019.

[51] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. Surface

code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011,

dec 2012.

[52] Oscar Higgott and Nikolas P. Breuckmann. Subsystem codes with high thresholds

by gauge fixing and reduced qubit overhead. Phys. Rev. X, 11:031039, Aug 2021.

[53] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve

isogenies in quantum subexponential time. Journal of Mathematical Cryptology,

8(1):1–29, jan 2014.

[54] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral

hidden subgroup problem. SIAM J. Comput. 35 (2005), 170-188, 2003.

[55] Kevin Cheung and Michele Mosca. Decomposing finite abelian groups. Quantum

Information and Computation, 1, 11 2001.

[56] Greg Kuperberg. Another subexponential-time quantum algorithm for the di-

hedral hidden subgroup problem. 8th Conference on the Theory of Quantum

Computation, Communication and Cryptography 22 (2013), 20-34, 2011.

[57] Biasse, Jao, and Sankar. A quantum algorithm for computing isogenies between

supersingular elliptic curves (INDOCRYPT 2014). https://link.sprin

ger.com/content/pdf/10.1007/978-3-319-13039-2.pdf, 2014.

(Accessed on 04/13/2022).

[58] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum

circuits for the CSIDH: Optimizing quantum evaluation of isogenies. Cryptology

ePrint Archive, Report 2018/1059, 2018. https://ia.cr/2018/1059.

https://link.springer.com/content/pdf/10.1007/978-3-319-13039-2.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-13039-2.pdf
https://ia.cr/2018/1059

BIBLIOGRAPHY 85

[59] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean,

Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra

in quantum circuits with linear t complexity. Physical Review X, 8(4), oct 2018.

[60] Austin G. Fowler. Optimal complexity correction of correlated errors in the

surface code, 2013.

[61] Samuel Jaques. Sam jaques surface code project. https://sam-jaques.app

spot.com/projects/surface_codes. (Accessed on 04/19/2022).

[62] Samuel Jaques. Quantum cost models for cryptanalysis of isogenies. https:

//uwspace.uwaterloo.ca/handle/10012/14612, 2019. (Accessed on

04/17/2022).

[63] NIST. PQC third round candidate announcement | CSRC. https://csrc.nis

t.gov/News/2020/pqc-third-round-candidate-announcement.

(Accessed on 04/19/2022).

[64] Daniel J. Bernstein andA. K. Lenstra. A general number field sieve implementation.

In Arjen K. Lenstra andHendrikW. Lenstra, editors, The development of the number

field sieve, pages 103–126, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[65] Wouter Castryck and Thomas Decru. CSIDH on the surface. Cryptology ePrint

Archive, Report 2019/1404, 2019. https://ia.cr/2019/1404.

[66] Martin Suchara, John Kubiatowicz, Arvin Faruque, Frederic T. Chong, Ching-Yi

Lai, and Gerardo Paz. QuRE: The quantum resource estimator toolbox. In 2013

IEEE 31st International Conference on Computer Design (ICCD), pages 419–426,

2013.

[67] Priestley. Introduction to groups, rings and fields. https://people.maths

.ox.ac.uk/flynn/genus2/sheets0405/grfnotes1011.pdf, 2011.

(Accessed on 04/19/2022).

https://sam-jaques.appspot.com/projects/surface_codes
https://sam-jaques.appspot.com/projects/surface_codes
https://uwspace.uwaterloo.ca/handle/10012/14612
https://uwspace.uwaterloo.ca/handle/10012/14612
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://ia.cr/2019/1404
https://people.maths.ox.ac.uk/flynn/genus2/sheets0405/grfnotes1011.pdf
https://people.maths.ox.ac.uk/flynn/genus2/sheets0405/grfnotes1011.pdf

BIBLIOGRAPHY 86

[68] Mohammad Mahmoody and Avi Wigderson. Black boxes, incorporated. https:

//www.cs.virginia.edu/~mohammad/files/papers/BlackBoxes.

pdf, 2012. (Accessed on 04/22/2022).

[69] Margus Niitsoo. Cryptographic reductions. https://courses.cs.ut.

ee/2008/crypto-seminar-spring/papers/niitsoo1.pdf, 2008.

(Accessed on 04/22/2022).

https://www.cs.virginia.edu/~mohammad/files/papers/BlackBoxes.pdf
https://www.cs.virginia.edu/~mohammad/files/papers/BlackBoxes.pdf
https://www.cs.virginia.edu/~mohammad/files/papers/BlackBoxes.pdf
https://courses.cs.ut.ee/2008/crypto-seminar-spring/papers/niitsoo1.pdf
https://courses.cs.ut.ee/2008/crypto-seminar-spring/papers/niitsoo1.pdf

	List of Figures
	Introduction
	Contributions of this Paper
	Preliminaries
	Acknowledgements

	Background: Cryptography and CSIDH
	Cryptography: An Introduction to Subterfuge
	Elliptic Curves
	Isogeny-Based Cryptography
	Classical Security of CSIDH

	Background: an Introduction to Quantum Computing
	Quantum Information Theory
	Quantum Computation
	Error-Correction and Surface Code

	Mathematical Basics of Security of CSIDH
	Kuperberg's Algorithm and Alternatives
	Applying the Hidden Subgroup Problem to CSIDH
	Construction of a Reduction to CSIDH

	Quantum Cryptanalysis of CSIDH
	Literature Review
	Error Corrected Quantum Cryptanalysis of CSIDH

	Conclusion
	Appendix
	Bibliography

