Cryptography and quantum computers: Where do we stand?

Chloe Martindale

University of Bristol

CS Seminar, Bristol, 29 January 2020
What is this all about?
Cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver
Cryptography

Problems:

- Communication channels store and spy on our data
- Communication channels are modifying our data
Cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver

Problems:
- Communication channels store and spy on our data
- Communication channels are modifying our data

Goals:
- **Confidentiality** despite Eve’s espionage.
- **Integrity**: recognising Eve’s espionage.

(Slide mostly stolen from Tanja Lange)
Post-quantum cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver

- Eve has a quantum computer.
- Harry and Meghan don’t have a quantum computer.

(Slide mostly stolen from Tanja Lange)
Post-quantum cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver

- Eve has a quantum computer.
- Harry and Meghan don’t have a quantum computer.

(Slide mostly stolen from Tanja Lange)
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.

- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true. This will make current asymmetric algorithms obsolete.

- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks. This reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in asymmetric cryptography with something quantum-resistant.
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of **asymmetric** and **symmetric** cryptography.
- Asymmetric cryptography typically relies on the ‘**discrete logarithm problem**’ being **slow** to solve: with **Shor’s quantum algorithm** this is no longer true.
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the ‘discrete logarithm problem’ being slow to solve: with Shor’s quantum algorithm this is no longer true. ⇒ will make current asymmetric algorithms obsolete.
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of **asymmetric** and **symmetric** cryptography.
- Asymmetric cryptography typically relies on the ‘**discrete logarithm problem**’ being **slow** to solve: with **Shor’s quantum algorithm** this is no longer true. \(\sim\) will make current asymmetric algorithms **obsolete**.
- Symmetric cryptography typically has **less mathematical structure** so quantum computers are less devastating, but **Grover’s quantum algorithm** still speeds up attacks.
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the ‘discrete logarithm problem’ being slow to solve: with Shor’s quantum algorithm this is no longer true. ⇮ will make current asymmetric algorithms obsolete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover’s quantum algorithm still speeds up attacks. ⇮ reduces security of current symmetric algorithms.
Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the ‘discrete logarithm problem’ being slow to solve: with Shor’s quantum algorithm this is no longer true. \rightsquigarrow will make current asymmetric algorithms obsolete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover’s quantum algorithm still speeds up attacks. \rightsquigarrow reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in asymmetric cryptography with something quantum-resistant.
Case study: Diffie–Hellman key exchange ’76

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^*, today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)
Case study: Diffie–Hellman key exchange ’76

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^*, today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

Harry

$$a \xleftarrow{\text{random}} \{0 \ldots p-1\}$$

$$n^a$$

$$s := (n^b)^a$$

Meghan

$$b \xleftarrow{\text{random}} \{0 \ldots p-1\}$$

$$n^b$$

$$s := (n^a)^b$$

Eve

Broken by Shor!
Case study: Diffie–Hellman key exchange ’76

Public parameters:

- a prime \(p \) (experts: uses \(\mathbb{F}_p^* \), today also elliptic curves)
- a number \(n \) (mod \(p \)) (nonexperts: think of an integer less than \(p \))

\[a \leftarrow \text{random} \{0 \ldots p-1\} \quad b \leftarrow \text{random} \{0 \ldots p-1\} \]

\[n^a \quad n^b \]

\[s := (n^b)^a \quad s := (n^a)^b \]

- Harry and Meghan agree on a secret key \(s \), then they can use that to encrypt their messages.
Case study: Diffie–Hellman key exchange ’76

Public parameters:
- a **prime** \(p \) (experts: uses \(\mathbb{F}_p^* \), today also elliptic curves)
- a **number** \(n \mod p \) (nonexperts: think of an integer less than \(p \))

<table>
<thead>
<tr>
<th>Harry</th>
<th>Eve</th>
<th>Meghan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \leftarrow \text{random}) {0...(p-1 })</td>
<td>(b \leftarrow \text{random}) {0...(p-1 })</td>
<td></td>
</tr>
<tr>
<td>(n^a)</td>
<td></td>
<td>(n^b)</td>
</tr>
<tr>
<td>(s := (n^b)^a)</td>
<td></td>
<td>(s := (n^a)^b)</td>
</tr>
</tbody>
</table>

- Harry and Meghan agree on a secret key \(s \), then they can use that to encrypt their messages.
- Eve sees \(n^a \) and \(n^b \), but can’t find \(a \), \(b \), or \(s \).
Case study: Diffie–Hellman key exchange ’76

Public parameters:
- a prime \(p \) (experts: uses \(\mathbb{F}_p^* \), today also elliptic curves)
- a number \(n \pmod{p} \) (nonexperts: think of an integer less than \(p \))

Harry

\[a \xleftarrow{\text{random}} \{0 \ldots p-1\} \]

\[n^a \]

Eve

\[n^a \xrightarrow{\text{public}} \]

\[n^b \]

\[s := (n^a)^b \]

- Harry and Meghan agree on a secret key \(s \), then they can use that to encrypt their messages.
- Eve sees \(n^a \) and \(n^b \), but can’t find \(a, b, \) or \(s \).
Alternatives

Ideas to replace the discrete logarithm problem:
Alternatives

Ideas to replace the discrete logarithm problem:

- **Code-based encryption**: uses error correcting codes.
 - Short ciphertexts, large public keys.

- **Hash-based signatures**: uses hard-to-invert functions.
 - Well-studied security, small public keys.

- **Isogeny-based encryption and signatures**: based on finding maps between (elliptic) curves.
 - Smallest keys, slow encryption.

- **Lattice-based encryption and signatures**: based on finding short vectors in high-dimensional lattices.
 - Fastest encryption, huge keys, slow signatures.

- **Multivariate signatures**: based on solving simultaneous multivariate equations.
 - Short signatures, large public keys, slow.
Alternatives

Ideas to replace the discrete logarithm problem:

- **Code-based encryption**: uses error correcting codes. Short ciphertexts, large public keys.
- **Hash-based signatures**: uses hard-to-invert functions. Well-studied security, small public keys.
Alternatives

Ideas to replace the discrete logarithm problem:

▶ **Code-based encryption**: uses error correcting codes. Short ciphertexts, large public keys.

▶ **Hash-based signatures**: uses hard-to-invert functions. Well-studied security, small public keys.

▶ **Isogeny-based encryption and signatures**: based on finding maps between (elliptic) curves. Smallest keys, slow encryption.
Alternatives

Ideas to replace the discrete logarithm problem:

- **Code-based encryption**: uses error correcting codes. Short ciphertexts, large public keys.
- **Hash-based signatures**: uses hard-to-invert functions. Well-studied security, small public keys.
- **Isogeny-based encryption and signatures**: based on finding maps between (elliptic) curves. Smallest keys, slow encryption.
- **Lattice-based encryption and signatures**: based on finding short vectors in high-dimensional lattices. Fastest encryption, huge keys, slow signatures.
Alternatives

Ideas to replace the discrete logarithm problem:

- **Code-based encryption**: uses error correcting codes.
 Short ciphertexts, large public keys.

- **Hash-based signatures**: uses hard-to-invert functions.
 Well-studied security, small public keys.

- **Isogeny-based encryption and signatures**: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.

- **Lattice-based encryption and signatures**: based on finding short vectors in high-dimensional lattices.
 Fastest encryption, huge keys, slow signatures.

- **Multivariate signatures**: based on solving simultaneous multivariate equations.
 Short signatures, large public keys, slow.

(Slide mostly stolen from Tanja Lange)
Problem: It is trivial to find paths (subtract coordinates).
What to do?
Problem: It is trivial to find paths (subtract coordinates).
What to do?
Case study: Isogenies. Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).
What to do?
Case study: Isogenies. Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?
Case study: Isogenies. Big picture

- Isogenies are a source of exponentially-sized graphs.
Case study: Isogenies. Big picture

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
Case study: Isogenies. Big picture

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
Case study: Isogenies. Big picture

- Isogenies are a source of **exponentially-sized graphs**.
- We can **walk efficiently** on these graphs.
- **Fast mixing**: short paths to (almost) all nodes.
- No known efficient algorithms to **recover paths** from endpoints.
Case study: Isogenies. Big picture

- **Isogenies** are a source of *exponentially-sized graphs*.
- We can *walk efficiently* on these graphs.
- **Fast mixing**: short paths to (almost) all nodes.
- **No known efficient algorithms to recover paths** from endpoints.
- **Enough structure to navigate** the graph meaningfully. That is: some well-behaved ‘directions’ to describe paths.
Case study: Isogenies

Components of the isogeny graphs look like this:
Case study: Isogenies

Components of the isogeny graphs look like this:
Case study: Isogenies

Components of the isogeny graphs look like this:
Case study: Isogenies

At this time, there are two distinct families of systems:

CSIDH ['siː,saɪd]
https://csidh.isogeny.org

SIKE
https://sike.org
Case study: Isogenies

A 3-isogeny

\[E_{51}: y^2 = x^3 + 51x^2 + x \quad \rightarrow \quad E_9: y^2 = x^3 + 9x^2 + x \]

\[(x, y) \quad \mapsto \quad \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right) \]
Case study: Isogenies. Key exchange at the CSIDH
Where are we now?

- Post-quantum cryptography discussion dominated by NIST competition for standardization.
Where are we now?

- Post-quantum cryptography discussion dominated by NIST competition for standardization.
- This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough—and the time frame for transitioning to a new security protocol is sufficiently long and uncertain—that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.
Where are we now (according to NIST)?

The NIST not-a-competition:

- Had 82 submissions in 2017
- 69 were accepted
- 26 submissions currently in 2nd round, aiming for a total of 3 rounds
- Aiming for standardization in 2022.
Where are we now (according to NIST)?

Stolen from NIST’s/Dustin Moody’s Round 1 summary from 2019:

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code-based</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Hased-based</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lattice-based</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Multivariate</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Where are we now (according to NIST)?

Stolen from NIST’s/Dustin Moody’s Round 1 summary from 2019:

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code-based</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Hased-based</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lattice-based</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Multivariate</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

▶ Doesn’t include CSIDH!
(It is newer than the NIST competition).
What can we do?

We have:

- **KEM/Encryption** and **signatures**
 (many options from NIST competition).

- **Diffie-Hellman-style** / **non-interactive key exchange**
 (only option is with CSIDH).

We don’t have:

- Anything else! For example, **privacy-preserving protocols**.
Important open problems/research directions

Needed for all post-quantum candidates:

- Thorough **cryptanalysis** – classical and quantum.
- **Secure and efficient** implementation (especially considering hardware limitations).
- **Meaningful comparison** between candidates (must come from comparable implementations).
- More advanced protocols.
Thank you!