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1. Define
E/Q : y2 = x3 + 1.

(a) The line passing through (−1, 0) and (0, 1) is defined by L : y = x+1.
To find the third point of intersection between L and E we plug L
into E:

(x+ 1)2 = x3 + 1⇔ 0 = x3 − x2 − 2x = x(x+ 1)(x− 2).

So the third point in L ∩ E has x coordinate 2 and y coordinate
2 + 1 = 3. Therefore

(−1, 0) + (0, 1) = −(2, 3) = (2,−3).

(b) To compute the tangent line at the point (0, 1) we need to compute
the gradient of E at this point, so we first differentiate E with respect
to y, giving

2y
dy

dx
= 3x2.

Therefore, at (0, 1) the tangent to E has gradient dy
dx = 0, so the

equation of the line is given by

L : x = 0.

By plugging L into E we now see that the unique second intersection
point of L with E is (0,−1), hence

2(0, 1) = (0,−1).

(c) Clearly (0, 1) 6= ∞ and by (b), we have that 2(0, 1) = (0,−1) 6= ∞
so n > 2. Now

3(0, 1) = 2(0, 1) + (0, 1) = (0, 1) + (0,−1) =∞,

hence n = 3.
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2. Define
E/F17 : y2 = x3 + 1

and
E′/F17 : y2 = x3 − 10.

(This was a typo in the problem sheet).

(a) Define
f : (x, y) 7→ ((x3 + 4)/x2, (x3y − 8y)/x3).

We want to show that f : E → E′, or equivalently, that if

x′ = (x3 + 4)/x2, (1)

y′ = (x3y − 8y)/x3, (2)

and
y2 ≡ x3 + 1 mod 17, (3)

then
(y′)2 ≡ (x′)3 − 10 mod 17.

So assume (1), (2), and (3). Then

(y′)2 + 10 = (y2(x3 − 8)2 + 10x6)/x6 by (2)

≡ ((x3 + 1)(x3 − 8)2 + 10x6)/x6 mod 17 by (3)

≡ (x9 + 12x6 + 48x3 + 64)/x6 mod 17

≡ (x′)3 mod 17 by (1).

(b) We claim that the points in the preimage of (3, 0) are

{(0,−1), (2, 3), (2,−3).}

Any point (x, y) in the preimage of (3, 0) under f must satisfy

x3y − 8y ≡ 0 mod 17,

so either y ≡ 0 mod 17 or x3 ≡ 8 mod 17. There is a unique point
in E(F17) with y ≡ 0 given by P1 = (−1, 0), and there are exactly 2
points in E(F17) with x3 ≡ 8 given by P2 = (2, 3) and P3 = (2,−3).
Hence the preimage of (3, 0) under f is given by

{Pi ∈ {P1, P2, P3} : f(Pi) = (3, 0)}.

Now

f(P1) = (((−1)3 + 4)/(−1)2, 0) = (3, 0)

f(P2) = ((23 + 4)/22, (23 · 3− 8 · 3)/23) = (3, 0)

f(P3) = ((23 + 4)/22, (23 · (−3)− 8 · (−3))/23) = (3, 0),

and hence our claim holds.

2



(c) In the slides we saw that for an elliptic curve defined by E : y2 =
x3 + ax+ b, the j-invariant is given by

j(E) = 1728
4a3

4a3 + 27b2
.

For both E and E′ we have a = 0, and hence

j(E) = j(E′) = 0.

(d) To see that E and E′ are isomorphic over F172 , we first observe that(
−10
17

)
= −1 and hence F172

∼= F17(
√
−10). We then claim that

the map
f : (x, y)→ (−3x,

√
−10y),

defined over F17(
√
−10), is an isomorphism E′ → E. To see this, we

divide the equation for E′ by −10:

E′ :
y2

−10
=

x3

−10
+ 1,

and then apply f :

f(E′) :
−10y2

−10
=

(−3x)3

−10
+ 1,

which is the equation for E. So f defines a map E′ → E. Similarly,

g : (x, y) 7→ ((−3)−1x, (
√
−10

−1
y)

defines a map E → E′, and f ◦ g = g ◦ f = id, so E and E′ are
isomorphic over F172 .
It remains to show that E and E′ are not isomorphic over F17. Given
the material from the lecture, the only viable way to check is by brute
force: write every invertible rational map over F17 and check that
none of them work (using a computer)!
Here is a nicer way; the following is Theorem III.3.1(b) in ‘Rational
Points on Elliptic Curves’ by Silverman and Tate:

Theorem. Let k be a field and E, E′ elliptic curves over k. Ev-
ery isomorphism from E to E′ defined over k restricts to an affine
isomorphism of the form

φ(x, y) = (u2x+ r, u3y + su2x+ t)

where u, r, s, t ∈ k. The isomorphism is defined over k if and only if
u, r, s, t ∈ k.
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Observe further that as our elliptic curves are all of the form y2 =
x3 + ax + b, we must always have that s = t = 0. We proceed by
attempting to compute u and r in our case. Any F17-isomorphism
from E to E′ must also define an isomorphism of groups

E(F17)→ E′(F17),

so that in particular, a point of order n will be sent to a point of order
n. We compute that the set of E(F17)-points of order 2 is given by

E(2) := {(16, 0)},

the set of E(F17)-points of order 3 is given by

E(3) := {(0, 1), (0, 16)},

the set of E′(F17)-points of order 2 is given by

(E′)(2) := {(3, 0)},

and the set of E′(F17)-points of order 3 is given by

(E′)(3) := {(5, 8), (5, 9)}.

Suppose that we have an isomorphism E → E′ defined by

φ : (x, y) 7→ (u2x+ r, u3y).

Then as φ : E(3) → (E′)(3), we conclude that r = 5 and u = ±2. But
then

φ : (16, 0) 7→ (−4 + 5, 0),

so φ does not map E(2) → (E′)(2), which is a contradiction.

3. As ` is a prime, every size ` subgroup of Z/`Z×Z/`Z is isomorphic to the
cyclic group Z/`Z. Furthermore, every element of

Z/`Z× Z/`Z

except for (0, 0) generates a cyclic group of order `, and each non-zero
element of such a cyclic group G ∼= Z/`Z generates G. Hence, the number
of distinct size ` subgroups of Z/`Z× Z/`Z is given by

#(Z/`Z× Z/`Z)− 1

#(Z/`Z)×
=
`2 − 1

`− 1
= `+ 1.

From the lectures we know that for an elliptic curve E/Fq and a prime `
such that ` 6= p, the `-torsion of E is

E[`] ∼= Z/`Z× Z/`Z.

We also know that for every size ` subgroup G ⊂ E[`], there exists an
elliptic curve E′ and a separable isogeny ϕ : E → E′ with ker(ϕ) = G,
giving us `+ 1 degree ` isogenies from E from the `+ 1 size ` subgroups
of Z/`Z× Z/`Z.
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4. For a point P on en elliptic curve, write ϕP for the isogeny with kernel
〈P 〉. It suffices to show that

(E/〈A〉)/〈ϕA(B)〉 = (E/〈B〉)/〈ϕB(A)〉 = E/〈A,B〉,

as we then get a commutative diagram

E

ϕA

��

ϕB // E/〈B〉

ϕϕB(A)

��
E/〈A〉

ϕϕA(B)

// E/〈A,B〉.

Observe that A and B have coprime orders, so that B 6∈ 〈A〉 and A 6∈ 〈B〉.
In particular, the image B+ 〈A〉 of B under ϕA is a point of E/〈A〉 of the
same order as B. Define Λ by

E/Λ = (E/〈A〉)/〈φA(B)〉 = (E/〈A〉)/〈B + 〈A〉〉.

Then clearly
Λ ⊆ 〈A,B〉,

and as B + 〈A〉 has the same order as B, the cardinalities are the same,
hence

Λ = 〈A,B〉.
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