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1. Define

(a)

B/Q:y* =2 +1.

The line passing through (—1,0) and (0, 1) is defined by L : y = x+1.
To find the third point of intersection between L and E we plug L
into E:

(x+1)P2=2+10=0-2> -2 =a2(x+1)(z—2).

So the third point in L N E has z coordinate 2 and y coordinate
2 + 1 = 3. Therefore

(*130) + (Oa 1) = 7(273) = (2’ 73)

To compute the tangent line at the point (0,1) we need to compute
the gradient of F at this point, so we first differentiate E with respect
to y, giving
dy
2 —_— =
ydx
Therefore, at (0,1) the tangent to E has gradient % = 0, so the
equation of the line is given by

32,

L:x=0.

By plugging L into ¥ we now see that the unique second intersection
point of L with E is (0, —1), hence

2(0,1) = (0,—1).

Clearly (0,1) # oo and by (b), we have that 2(0,1) = (0,—1) # oo
son > 2. Now

3(0,1) = 2(0,1) + (0,1) = (0,1) + (0, —1) = o0,

hence n = 3.



2. Define

and

E/Fi7 =23 +1

E'JFi7 :y* = 2® — 10.

(This was a typo in the problem sheet).

(a)

Define
fr(zy) = (2 +4)/2° (2%y — 8y)/2°).
We want to show that f: E — E’, or equivalently, that if

o’ = (2% +4)/22, (1)
y' = (¢°y — 8y) /2, (2)

and
y?=2°+1 mod 17, (3)

then

(v)? = (2/)® — 10 mod 17.
So assume , , and . Then
(y')? 4+ 10 = (y* (2 — 8)2 + 102°) /2" by
((2® 4 1)(2® — 8)? +-102°%) /2% mod 17 by
(2° + 122° + 4823 + 64) /2° mod 17
(z")® mod 17 by ().
We claim that the points in the preimage of (3,0) are

{(07 _1)7 (27 3)7 (27 _3)'}

Any point (z,y) in the preimage of (3,0) under f must satisfy

3y — 8y = 0 mod 17,

so either 4 = 0 mod 17 or 2 = 8 mod 17. There is a unique point
in E(Fy7) with y = 0 given by P; = (—1,0), and there are exactly 2
points in E(Fy7) with 23 = 8 given by P, = (2,3) and P53 = (2, —3).
Hence the preimage of (3,0) under f is given by

{P; e {P1, P, P} f(P;) = (3,0)}.

Now
F(P) = (((-1)* +4)/(=1)*,0) = (3,0)
F(P) = ((2° +4)/2%,(2° -3 -8-3)/2°) = (3,0)
F(P) = ((2° +4)/2°,(2° - (-3) = 8-(=3))/2°) = (3,0),

and hence our claim holds.



()

In the slides we saw that for an elliptic curve defined by E : y? =
23 + ax + b, the j-invariant is given by

4a3

IE) =128 o o

For both E and E’ we have a = 0, and hence

To see that £ and E’ are isomorphic over 2, we first observe that

( —1170 > = —1 and hence Fi72 = Fy7(v/—10). We then claim that

the map
f : (1',y) — (_va \% _]-Oy)v

defined over Fy7(1/—10), is an isomorphism E’ — E. To see this, we
divide the equation for E’ by —10:

2 3
Yy x
E .= = 1
10 —10 "
and then apply f:
—10y*  (—3z)?
E): = 1
HE) -10 "0

which is the equation for E. So f defines a map F’ — E. Similarly,

g: () = ((=3) ', (V=10 'p)

defines a map E — E’, and fog = go f = id, so E and E’ are
isomorphic over Fy;2.

It remains to show that F and E’ are not isomorphic over Fy7. Given
the material from the lecture, the only viable way to check is by brute
force: write every invertible rational map over Fi; and check that
none of them work (using a computer)!

Here is a nicer way; the following is Theorem II1.3.1(b) in ‘Rational
Points on Elliptic Curves’ by Silverman and Tate:

Theorem. Let k be a field and E, E’ elliptic curves over k. FEv-
ery isomorphism from E to E’ defined over k restricts to an affine
isomorphism of the form

d(x,y) = (Wlx + r,udy + su’z +t)

where u,r,s,t € k. The isomorphism is defined over k if and only if
u,r, s, t € k.



Observe further that as our elliptic curves are all of the form y? =
23 + ax + b, we must always have that s = t = 0. We proceed by
attempting to compute v and r in our case. Any [Fyy-isomorphism
from E to E’ must also define an isomorphism of groups

E(F17) = E'(F17),

so that in particular, a point of order n will be sent to a point of order
n. We compute that the set of F(F;7)-points of order 2 is given by

E® = {(16,0)},
the set of E(F17)-points of order 3 is given by
E® = {(0,1),(0,16)},
the set of E’(IFy7)-points of order 2 is given by
(B)® = {(3,0)},
and the set of E’'(IFy7)-points of order 3 is given by
(BN :={(5,8), (5,9)}-
Suppose that we have an isomorphism F — E’ defined by
6 (z,y) — (P +r,udy).

Then as ¢ : E®) — (E')®), we conclude that 7 = 5 and u = +2. But
then

¢ :(16,0) — (—4+5,0),
so ¢ does not map E®) — (E')®), which is a contradiction.

3. As (s a prime, every size ¢ subgroup of Z/¢Z x Z/¢Z is isomorphic to the
cyclic group Z/¢Z. Furthermore, every element of

ZJ0Z. x )07

except for (0,0) generates a cyclic group of order ¢, and each non-zero
element of such a cyclic group G = Z/¢Z generates G. Hence, the number
of distinct size ¢ subgroups of Z/¢Z x Z/¢Z is given by

#(Z)0L x LJOL) —1 02 —1

H#(Z)0T)> RS T

From the lectures we know that for an elliptic curve E/F, and a prime ¢
such that £ # p, the ¢-torsion of FE is

E[f] = Z)I7 x 7./¢Z.

We also know that for every size ¢ subgroup G C FE[{], there exists an
elliptic curve E’ and a separable isogeny ¢ : F — E’ with ker(p) = G,
giving us £ + 1 degree ¢ isogenies from E from the £ + 1 size ¢ subgroups
of Z/0Z. x T/ 1Z.



4. For a point P on en elliptic curve, write pp for the isogeny with kernel
(P). It suffices to show that

(E/(A)/{pa(B)) = (E/(B))/(vp(A)) = E/{(A, B),

as we then get a commutative diagram

i>E'/<B>

E
¢Al l‘pr(A)

ENA) 57 E/(A B).
Observe that A and B have coprime orders, so that B ¢ (A) and A ¢ (B).
In particular, the image B+ (A) of B under ¢4 is a point of E/{A) of the
same order as B. Define A by

E/A = (E/(A)/(9a(B)) = (E/(A))/(B + (4)).

Then clearly
A C (A, By,

and as B + (A4) has the same order as B, the cardinalities are the same,

hence
A= (A, B).



