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These notes are from a talk given in the Séminaire Géométrie et algèbre
effectives at Université de Rennes 1. This talk is based on a talk given at the
Heilbronn seminar in Bristol, UK, and at the Luxembourg Number Theory Day.
This talk includes results from my PhD thesis, supervised by Marco Streng, and
joint work (in progress) with Dimitar Jetchev, Enea Milio, Marius Vuille, and
Benjamin Wesolawski.

1 Isogeny graphs of elliptic curves

Definition. Suppose that E and E′ are elliptic curves over a field k. An isogeny
φ : E → E′ is a surjective morphism with finite kernel that sends the identity
to the identity.

Definition. Suppose that φ : E → E′ is an isogeny of elliptic curves over a
field k. This induces an injective morphism of function fields

k(E′) −→ k(E).

We define the degree of φ to be

deg(φ) = [k(E) : k(E′)].

If deg(φ) = `, then we call φ an `-isogeny.

Remark. If φ : E → E′ is a separable isogeny (i.e. if the field extension is
separable) then the degree of the isogeny is just the size of the kernel.

Remark. An `-isogeny φ : E → E′ has a dual `-isogeny φ∨ : E′ → E′ such
that

φ ◦ φ∨ = φ∨ ◦ φ = [`],

where [`] denotes the multiplication-by-` morphism.

Definition. An `-isogeny graph of elliptic curves as an undirected graph for
which each vertex represents a j-invariant (this is an isomorphism invariant) of
an elliptic curve over a field k, and an edge between j(E) and j(E′) represents
an `-isogeny E → E′ defined over k and its dual isogeny E′ → E.
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Definition. An `-volcano is an undirected connected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

1. The subgraph on level V0 is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1, and
this accounts for every edge not on the surface.

3. If d 6= 0, for i < d, each vertex in Vi has degree `+ 1.

Example. Here is a 2-volcano with d = 2:

Theorem (Kohel ’96). Let ` ∈ Z be a prime, and let E/Fq be an ordinary
elliptic curve with j(E) 6= 0, 1728. Then the connected component of the `-
isogeny graph containing j(E) is a `-volcano. Furthermore, locally at `, the
vertices occurring in level Vi have endomorphism ring `iOK .

Remark. The conditions in this theorem, namely ‘ordinary’ and j(E) 6= 0, 1728,
are to have control on the endomorphisms and the automorphisms of E. Given
an elliptic curve over any field, for every n ∈ Z there is and endomorphism of E
defined by the multiplication-by-n map, so in a natural way we can identify Z
with a subring of End(E). Furthermore, for every elliptic curve defined over a
finite field Fq, there exists the Frobenius morphism on E, and by looking at the
characteristic polynomial of this morphism, under Kohel’s conditions, we can
identify the Frobenius morphism with an algebraic integer π for which Q(π) is
an imaginary quadratic number field. In fact, the elliptic curve being ordinary
tells us even more, that

End(E)⊗Q = Q(π).

Remark. From the above remark, we see that

Z[π] ⊆ End(E) ⊆ OQ(π),

where π is the algebraic integer corresponding to the Frobenius morphism.
Therefore, the depth is ≤ max{r ∈ Z : `r|[OK : Z[π]]}, where π is the q-power
Frobenius endomorphism of E and K = Q(π), and in fact this is attained. So
the depth is as easy to compute as the Frobenius endomorphism. The structure
of level V0 and the number of connected components are also easy to compute.
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Now with a simple path walking algorithm we can determine if j(E) and
j(E′) are in the same connected component of the isogeny graph, hence deter-
mine if they are isogenous, and if they are, determine the degree of the isogeny
(or at least of one of the isogenies).

In fact, we can do even more, we can determine the endomorphism ring of
an elliptic curve by using a path walking algorithm to determine its position
in the `-volcano. The conditions on the elliptic curve E ensure that End(E) is
an order in an imaginary quadratic number field Q(π), where π is the q-power
Frobenius morphism on E. As locally at `, the vertices occurring in level Vi
have endomorphism ring `iOK , to determine the endomorphism ring of a given
elliptic curve (satisfying the conditions of Kohel’s theorem), we just have to
determine the endomorphism algebra K, list the primes `1, . . . , `r dividing the
index [OK : Z[π]], and do a path walking algorithm to determine the depth of
the vertex in the `1, . . . , `r-volcanoes.

2 Isogeny graphs of abelian varieties

We are able to define a discrete logarithm on elliptic curves and classify isogenies
of elliptic curves using isogeny graphs largely due to one property: that there
exists a group law. Recall that an elliptic curve (for odd characteristic) is defined
by a polynomial

y2 = f(x),

where deg(f) = 3. One could ask, what happens if deg(f) > 3? Or what about
other algebraic curves? One of the reasons that we so often stick to such a
special class of algebraic curves is because of the simple group law. But all is
not lost for other algebraic curves: although there is no known group law on the
curves themselves, to each algebraic curve C we can associate an abelian variety
(on which there exists a group law), called the Jacobian of C, written J(C),
or Jac(C). In fact, we can do even better, we can assume that the Jacobian
is a principally polarised abelian variety A - which for all purposes of this talk
means that there exists a ‘nice’ isomorphism from A to its dual. Furthermore,
if C is defined over k, then

C(k) ⊆ Jac(C)(k),

so we can study the k-rational points of C by studying the points on the Jaco-
bian, where we have a group law to help us.

Recall that the conditions on the elliptic curves to which Kohel’s theorem
can be applied ensured that the endomorphism algebra would be an imaginary
quadratic field generated by the Frobenius. We will need a natural generalisation
of this to abelian varieties.

Definition. A CM-field K is a totally imaginary quadratic extension of a totally
real number field K0.

Examples. • K = Q(
√
−2) is a CM-field with K0 = Q.
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• K = Q(
√
−3 +

√
2) is a CM-field with K0 = Q(

√
2).

Definition. An abelian variety A of dimension g has CM by a CM-field K of
degree 2g over Q if the endomorphism algebra End(A) ⊗ Q = K. If K0 is the
maximal totally real subfield of K, we say that A RM by K0.

A simple ordinary abelian variety defined over Fq is CM, i.e., there exists
a CM-field K of degree 2g over Q such that A has CM by K. This is again a
consequence of the existence Frobenius endomorphism π on A and its dual π.
From now on, unless stated otherwise, we will assume that A has CM by K,
and that OK0 ⊆ End(A) (i.e. A has maximal real multiplication by K0).

Definition. A morphism of abelian varieties is an isogeny if it preserves the
identity, is surjective, and has finite kernel.

The generalisation of an `-isogeny to higher dimension that we use is quite
complicated, so we do not a precise definition. The interested reader can find
the definition in the upcoming thesis of the author [Mar]. Recall that for elliptic
curves, given an isogeny E → E′, there was a dual isogeny E′ → E. What we
did not mention in the case of elliptic curves was that, to observe that the dual
isogeny is a morphism E′ → E, we used that an elliptic curve is isomorphic
to its dual. For general abelian varieties this is not true, but abelian varieties
that are Jacobians of curves are ‘principally polarisable’, which for all intents
and purposes of this talk means that there exists a ‘nice’ isomorphism A→ A∨.
We again associate a prime to the isogeny, but now a prime ideal in OK0

-
we study ‘µ-isogenies’ of principally polarised ordinary abelian varieties, where
µ is a totally positive element of OK0

which generates a prime ideal in K0.
A morphism φ : A → A′ of principally polarised ordinary abelian varieties is
‘defined’ to be a µ-isogeny if, up to the polarisations A ∼= A∨ and A′ ∼= (A′)∨,
we have that

φ∨ ◦ φ = [µ],

where [µ] denotes the multiplication-by-µ map on A, and φ preserves the RM
structure. Note in particular that the degree of φ is NormK0/Q(µ), hence if φ is
separable and the norm of µ is prime, then φ has cyclic kernel, again mimicking
the genus 1 case.

Definition. A µ-isogeny graph of principally polarised abelian varieties with
maximal real multiplication is an undirected graph for which each vertex rep-
resents a principally polarised ordinary abelian variety with maximal real mul-
tiplication over a field Fq up to (polarisation and RM preserving) isomorphism,
and an edge between A and A′ represents a µ-isogeny A → A′ defined over Fq
together with its dual isogeny (A′)∨ → A∨ (again, up to isomorphism).

Let I be the graph with one vertex and no edges, let R1 be a 1-cycle with
one edge of weight 1

2 , let R2 be 2 vertices joined by a single edge, and let Cn be
a cycle of length n.
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Theorem (M. ’17). Let A/Fq be a principally polarised ordinary abelian variety
with maximal real multiplication by K0 and suppose that the only roots of unity
in End(A) ⊗ Q are ±1. Then the connected component of the µ-isogeny graph
containing A is a NormK0/Q(µ)-volcano with V0 ∈ {I,R1, R2, Cn}. Further-
more, locally at µ, the vertices occurring in level Vi have endomorphism ring
µiOK .

Remark. Independently, Brooks, Jetchev, and Wesolowski proved a similar
statement (for abelian varieties with primitive CM type) in [BJW].

Remark. As before, the existence of the Frobenius morphism on A tells us
that there exists an algebraic integer π of degree 2g over Q for which q = ππ
and Z[π] ⊆ End(A). Similarly, the Verschiebung morphism on A tells us that
Z[π] ⊆ End(A) and by assumption we have that OK0 ⊆ End(A) ⊆ OK . In
particular, the endomorphism ring of A must be an order in K such that

OK0 [π, π] ⊆ End(A) ⊆ OK .

As before, we can conclude from this that the depth of the µ-volcano is

≤ max
r∈Z
{µrOK ⊆ (OK0

[π, π] : OK),

and again, this is realised. Note in particular that this formula for the depth
shows that for all but finitely many µ, the depth is 0, that is, the connected
component is exactly V0. The structure of V0 is also easy to compute, but we
do not address that here for reasons of time.

In the following section, we drop the condition that OK0
⊆ End(A).

3 The Discrete Logarithm Problem for Genus 3
Curves

Many cryptosystems are based on the Diffie-Hellman key exchange. Let G be
a large commutative group, and suppose that Alice and Bob want to compute
a shared secret element of this group. To do this, Alice chooses a secret integer
a ∈ Z and Bob chooses a secret integer b ∈ Z, and Alice (or Bob, or the NSA,
or you) chooses and publishes an element g of G of large order. Alice then
computes ag and sends it to Bob, and Bob computes bg and sends in to Alice.
Alice and Bob can then both compute their shared secret abg.

The security of this cryptosystem relies on the hardness of the so-called
Discrete Logarithm Problem: given ng and g ∈ G, compute n ∈ Z. The groups
used should be sufficiently large so that enumeration is not computationally
feasible, but even then there are some deeper mathematical tricks that can be
used on some groups to solve the problem in sub-exponential time. To get an
idea of how hard the discrete logarithm problem is for some groups, consider
the following examples:
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Examples. • Let G = E(Fq) be the group of Fq-rational points on a ‘suffi-
ciently generic’ elliptic curve defined over Fq. The best known algorithm
for the Discrete Logarithm Problem on G has complexity O(

√
q).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficiently generic’ genus 2 curve defined over Fq. The best known
algorithm for the Discrete Logarithm Problem on G has complexity O(q).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficiently generic’ hyperelliptic genus 3 curve over Fq. The best
known algorithm for the Discrete Logarithm Problem on G has complexity
O(q3/2).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficienly generis’ plane quartic genus 3 curve over Fq. The best
known algorithm, due to Diem and Smith, for the Discrete Logarithm on
G has complexity O(q). In this case ‘the Discrete Logarithm Problem is
broken’, by which we mean that for a high enough security level, we have
to increase the size of the finite field so much that the computations on the
curve become too inefficient to be competitive with other options (such as
genus 1 and 2 curves).

Under heuristic assumptions, in joint work in progress with Jetchev, Milio,
Vuille, and Wesolawski, we give an algorithm that breaks the discrete logarithm
for almost all genus 3 curves. That is, we give an algorithm that, on a sufficiently
generic genus 3 curve C over Fq, given P and nP in J (C)(Fq), computes n in
time O(q). The strategy is as follows:

• If C is plane quartic, use the algorithm of Diem and Smith. Else, construct
a plane quartic C ′ and an isogeny φ : J (C)→ J (C ′).

• Compute φ(nP ) = nφ(P ).

• Compute n in time O(q) using the algorithm of Diem and Smith.

Our contribution to this is the construction in (1), which we now address.
We use our knowledge of isogeny graphs to use a simple path-walking algorithm
to find such a curve and isogeny in polynomial time, heuristically almost all of
the time.

Definition. A isogeny graph of principally polarised abelian varieties is an undi-
rected graph for which each vertex represents a principally polarised abelian va-
riety with maximal over a field Fq up to (polarisation preserving) isomorphism,
and an edge between A and A′ represents a (polarisation preserving) isogeny
A → A′ defined over Fq together with its dual isogeny (A′)∨ → A∨ (again, up
to isomorphism).

Note that the µ-isogeny graphs of the previous section will be subgraphs of
the whole isogeny graph. Note also that we are interested in curves and the
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isogeny graph refers to abelian varieties. However, by Torelli’s theorem, every
principally polarised simple abelian variety of dimension 3 is the Jacobian of a
genus 3 curve. Furthermore, we mentioned plane quartic genus 3 curves already,
and in fact a genus 3 curve can always be written as a hyperelliptic curve or a
plane quartic curve. So, it suffices to give an algorithm that, given the Jacobian
of a hyperelliptic genus 3 curve, computes an isogeny to the Jacobian of a plane
quartic curve in polynomial time with high probability.

Definition. We define an isogeny graph G of principally polarised abelian va-
rieties of dimension 3 over Fq to be good if there exists a constant 0 < c < 1
such that

#{non-hyp vertices} ≥ c#{hyp vertices},

and the non-hyperelliptic vertices are ‘sufficiently randomly distributed’ in each
of the connected components of G.

Then, we can use our knowledge of isogeny graphs to find a ‘random-looking’
point on the isogeny graph connected to the original curve. Under the following
heuristic assumptions, a short random walk from this point should result in a
plane quartic curve:

Heuristics. • There exists a constant c > 0, independent of q, such that a
randomly chosen ordinary isogeny class over Fq is good with probability
1.

• There exists a constant c > 0, independent of q, such that each ordinary
isogeny class over Fq is good.

We have written code to verify these heuristics experimentally, and we will
still compute more data before we are willing to make a conjecture to the above
effect, but practically, based on our experiments, this attack has a high proba-
bility of being effective.
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